Goto

Collaborating Authors

 Yao, Quanming


Superpose Singular Features for Model Merging

arXiv.org Artificial Intelligence

Model merging is a critical technique for combining the capabilities of multiple fine-tuned models without requiring additional training. While existing methods treat parameters as vectors, they overlook the intrinsic structure of linear transformation matrices - the core components that comprise the majority of model parameters. These matrices are fundamental to neural networks, mapping input representations to output features through linear combinations. Motivated by the linear representation hypothesis, we introduce task matrix and propose to Superpose Features from Task Matrix (SFTM), a novel approach that superposes features from individual task models into a merged model. SFTM employs singular value decomposition to identify feature bases of linear transformation matrices and solves a linear system to optimally combine them while preserving input-output mappings from individual task models. Extensive experiments on vision transformers and language models demonstrate that our method consistently outperforms existing methods, achieving superior performance and enhanced out-of-distribution generalization.


Benchmarking Graph Learning for Drug-Drug Interaction Prediction

arXiv.org Artificial Intelligence

Predicting drug-drug interaction (DDI) plays an important role in pharmacology and healthcare for identifying potential adverse interactions and beneficial combination therapies between drug pairs. Recently, a flurry of graph learning methods have been introduced to predict drug-drug interactions. However, evaluating existing methods has several limitations, such as the absence of a unified comparison framework for DDI prediction methods, lack of assessments in meaningful real-world scenarios, and insufficient exploration of side information usage. In order to address these unresolved limitations in the literature, we propose a DDI prediction benchmark on graph learning. We first conduct unified evaluation comparison among existing methods. To meet realistic scenarios, we further evaluate the performance of different methods in settings with new drugs involved and examine the performance across different DDI types. Component analysis is conducted on the biomedical network to better utilize side information. Through this work, we hope to provide more insights for the problem of DDI prediction. Our implementation and data is open-sourced at https://anonymous.4open.science/r/DDI-Benchmark-ACD9/.


Generalizing Hyperedge Expansion for Hyper-relational Knowledge Graph Modeling

arXiv.org Artificial Intelligence

By representing knowledge in a primary triple associated with additional attribute-value qualifiers, hyper-relational knowledge graph (HKG) that generalizes triple-based knowledge graph (KG) has been attracting research attention recently. Compared with KG, HKG is enriched with the semantic qualifiers as well as the hyper-relational graph structure. However, to model HKG, existing studies mainly focus on either semantic information or structural information therein, which however fail to capture both simultaneously. To tackle this issue, in this paper, we generalize the hyperedge expansion in hypergraph learning and propose an equivalent transformation for HKG modeling, referred to as TransEQ. Specifically, the equivalent transformation transforms a HKG to a KG, which considers both semantic and structural characteristics. Then an encoder-decoder framework is developed to bridge the modeling research between KG and HKG. In the encoder part, KG-based graph neural networks are leveraged for structural modeling; while in the decoder part, various HKG-based scoring functions are exploited for semantic modeling. Especially, we design the sharing embedding mechanism in the encoder-decoder framework with semantic relatedness captured. We further theoretically prove that TransEQ preserves complete information in the equivalent transformation, and also achieves full expressivity. Finally, extensive experiments on three benchmarks demonstrate the superior performance of TransEQ in terms of both effectiveness and efficiency. On the largest benchmark WikiPeople, TransEQ significantly improves the state-of-the-art models by 15\% on MRR.


Customized Subgraph Selection and Encoding for Drug-drug Interaction Prediction

arXiv.org Artificial Intelligence

Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs), which are essential for medical practice and drug development. Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments. In this study, inspired by the success of neural architecture search (NAS), we propose a method to search for data-specific components within subgraph-based frameworks. Specifically, we introduce extensive subgraph selection and encoding spaces that account for the diverse contexts of drug interactions in DDI prediction. To address the challenge of large search spaces and high sampling costs, we design a relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations. This approach allows for robust exploration of the search space. Extensive experiments demonstrate the effectiveness and superiority of the proposed method, with the discovered subgraphs and encoding functions highlighting the model's adaptability.


Neural Symbolic Regression of Complex Network Dynamics

arXiv.org Artificial Intelligence

Complex networks describe important structures in nature and society, composed of nodes and the edges that connect them. The evolution of these networks is typically described by dynamics, which are labor-intensive and require expert knowledge to derive. However, because the complex network involves noisy observations from multiple trajectories of nodes, existing symbolic regression methods are either not applicable or ineffective on its dynamics. In this paper, we propose Physically Inspired Neural Dynamics Symbolic Regression (PI-NDSR), a method based on neural networks and genetic programming to automatically learn the symbolic expression of dynamics. Our method consists of two key components: a Physically Inspired Neural Dynamics (PIND) to augment and denoise trajectories through observed trajectory interpolation; and a coordinated genetic search algorithm to derive symbolic expressions. This algorithm leverages references of node dynamics and edge dynamics from neural dynamics to avoid overfitted expressions in symbolic space. We evaluate our method on synthetic datasets generated by various dynamics and real datasets on disease spreading. The results demonstrate that PI-NDSR outperforms the existing method in terms of both recovery probability and error. Complex networks (Gerstner et al., 2014; Gao et al., 2016; Bashan et al., 2016; Newman et al., 2011) describe important structures in nature and society, which is composed of a set of nodes and a set of edges that connect them. Complex networks can model various real-world systems, including social networks (Kitsak et al., 2010), epidemic networks (Pastor-Satorras & Vespignani, 2001), brain networks (Laurence et al., 2019; Wilson & Cowan, 1972), and transportation networks (Kaluza et al., 2010). Extensive works (Zang & Wang, 2020; Murphy et al., 2021; Gao & Yan, 2022) have been conducted to analyze the dynamics of complex networks (Pastor-Satorras et al., 2015; MacArthur, 1970; Kuramoto & Kuramoto, 1984), which is crucial for understanding the underlying mechanisms of complex systems and predicting their future behaviors.


ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning

arXiv.org Artificial Intelligence

Meta-learning enables learning systems to adapt quickly to new tasks, similar to humans. To emulate this human-like rapid learning and enhance alignment and discrimination abilities, we propose ConML, a universal meta-learning framework that can be applied to various meta-learning algorithms without relying on specific model architectures nor target models. The core of ConML is task-level contrastive learning, which extends contrastive learning from the representation space in unsupervised learning to the model space in meta-learning. By leveraging task identity as an additional supervision signal during meta-training, we contrast the outputs of the meta-learner in the model space, minimizing inner-task distance (between models trained on different subsets of the same task) and maximizing inter-task distance (between models from different tasks). We demonstrate that ConML integrates seamlessly with optimization-based, metric-based, and amortization-based meta-learning algorithms, as well as in-context learning, resulting in performance improvements across diverse few-shot learning tasks. Meta-learning, or "learning to learn" (Schmidhuber, 1987; Thrun & Pratt, 1998), is a powerful paradigm designed to enable learning systems to adapt quickly to new tasks. During the meta-training phase, a meta-learner simulates learning across a variety of relevant tasks to accumulate knowledge on how to adapt effectively.


Knowledge-Aware Parsimony Learning: A Perspective from Relational Graphs

arXiv.org Artificial Intelligence

The scaling law, a strategy that involves the brute-force scaling of the training dataset and learnable parameters, has become a prevalent approach for developing stronger learning models. In this paper, we examine its rationale in terms of learning from relational graphs. We demonstrate that directly adhering to such a scaling law does not necessarily yield stronger models due to architectural incompatibility and representation bottlenecks. To tackle this challenge, we propose a novel framework for learning from relational graphs via knowledge-aware parsimony learning. Our method draws inspiration from the duality between data and knowledge inherent in these graphs. Specifically, we first extract knowledge (like symbolic logic and physical laws) during the learning process, and then apply combinatorial generalization to the task at hand. This extracted knowledge serves as the ``building blocks'' for achieving parsimony learning. By applying this philosophy to architecture, parameters, and inference, we can effectively achieve versatile, sample-efficient, and interpretable learning. Experimental results show that our proposed framework surpasses methods that strictly follow the traditional scaling-up roadmap. This highlights the importance of incorporating knowledge in the development of next-generation learning technologies.


HIGHT: Hierarchical Graph Tokenization for Graph-Language Alignment

arXiv.org Artificial Intelligence

Recently there has been a surge of interest in extending the success of large language models (LLMs) to graph modality, such as social networks and molecules. As LLMs are predominantly trained with 1D text data, most existing approaches adopt a graph neural network to represent a graph as a series of node tokens and feed these tokens to LLMs for graph-language alignment. Despite achieving some successes, existing approaches have overlooked the hierarchical structures that are inherent in graph data. Especially, in molecular graphs, the high-order structural information contains rich semantics of molecular functional groups, which encode crucial biochemical functionalities of the molecules. We establish a simple benchmark showing that neglecting the hierarchical information in graph tokenization will lead to subpar graph-language alignment and severe hallucination in generated outputs. To address this problem, we propose a novel strategy called HIerarchical GrapH Tokenization (HIGHT). HIGHT employs a hierarchical graph tokenizer that extracts and encodes the hierarchy of node, motif, and graph levels of informative tokens to improve the graph perception of LLMs. HIGHT also adopts an augmented graph-language supervised fine-tuning dataset, enriched with the hierarchical graph information, to further enhance the graph-language alignment. Extensive experiments on 7 molecule-centric benchmarks confirm the effectiveness of HIGHT in reducing hallucination by 40%, as well as significant improvements in various molecule-language downstream tasks.


Heuristic Learning with Graph Neural Networks: A Unified Framework for Link Prediction

arXiv.org Artificial Intelligence

Link prediction is a fundamental task in graph learning, inherently shaped by the topology of the graph. While traditional heuristics are grounded in graph topology, they encounter challenges in generalizing across diverse graphs. Recent research efforts have aimed to leverage the potential of heuristics, yet a unified formulation accommodating both local and global heuristics remains undiscovered. Drawing insights from the fact that both local and global heuristics can be represented by adjacency matrix multiplications, we propose a unified matrix formulation to accommodate and generalize various heuristics. We further propose the Heuristic Learning Graph Neural Network (HL-GNN) to efficiently implement the formulation. HL-GNN adopts intra-layer propagation and inter-layer connections, allowing it to reach a depth of around 20 layers with lower time complexity than GCN. Extensive experiments on the Planetoid, Amazon, and OGB datasets underscore the effectiveness and efficiency of HL-GNN. It outperforms existing methods by a large margin in prediction performance. Additionally, HL-GNN is several orders of magnitude faster than heuristic-inspired methods while requiring only a few trainable parameters. The case study further demonstrates that the generalized heuristics and learned weights are highly interpretable.


Knowledge-Enhanced Recommendation with User-Centric Subgraph Network

arXiv.org Artificial Intelligence

Recommendation systems, as widely implemented nowadays on various platforms, recommend relevant items to users based on their preferences. The classical methods which rely on user-item interaction matrices has limitations, especially in scenarios where there is a lack of interaction data for new items. Knowledge graph (KG)-based recommendation systems have emerged as a promising solution. However, most KG-based methods adopt node embeddings, which do not provide personalized recommendations for different users and cannot generalize well to the new items. To address these limitations, we propose Knowledge-enhanced User-Centric subgraph Network (KUCNet), a subgraph learning approach with graph neural network (GNN) for effective recommendation. KUCNet constructs a U-I subgraph for each user-item pair that captures both the historical information of user-item interactions and the side information provided in KG. An attention-based GNN is designed to encode the U-I subgraphs for recommendation. Considering efficiency, the pruned user-centric computation graph is further introduced such that multiple U-I subgraphs can be simultaneously computed and that the size can be pruned by Personalized PageRank. Our proposed method achieves accurate, efficient, and interpretable recommendations especially for new items. Experimental results demonstrate the superiority of KUCNet over state-of-the-art KG-based and collaborative filtering (CF)-based methods.