Goto

Collaborating Authors

 Yang, Zhirong


Self-Distillation Improves DNA Sequence Inference

arXiv.org Artificial Intelligence

Self-supervised pretraining (SSP) has been recognized as a method to enhance prediction accuracy in various downstream tasks. However, its efficacy for DNA sequences remains somewhat constrained. This limitation stems primarily from the fact that most existing SSP approaches in genomics focus on masked language modeling of individual sequences, neglecting the crucial aspect of encoding statistics across multiple sequences. To overcome this challenge, we introduce an innovative deep neural network model, which incorporates collaborative learning between a `student' and a `teacher' subnetwork. In this model, the student subnetwork employs masked learning on nucleotides and progressively adapts its parameters to the teacher subnetwork through an exponential moving average approach. Concurrently, both subnetworks engage in contrastive learning, deriving insights from two augmented representations of the input sequences. This self-distillation process enables our model to effectively assimilate both contextual information from individual sequences and distributional data across the sequence population. We validated our approach with preliminary pretraining using the human reference genome, followed by applying it to 20 downstream inference tasks. The empirical results from these experiments demonstrate that our novel method significantly boosts inference performance across the majority of these tasks. Our code is available at https://github.com/wiedersehne/FinDNA.


NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian

arXiv.org Artificial Intelligence

Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.


ChordMixer: A Scalable Neural Attention Model for Sequences with Different Lengths

arXiv.org Artificial Intelligence

Sequential data naturally have different lengths in many domains, with some very long sequences. As an important modeling tool, neural attention should capture long-range interaction in such sequences. However, most existing neural attention models admit only short sequences, or they have to employ chunking or padding to enforce a constant input length. Here we propose a simple neural network building block called ChordMixer which can model the attention for long sequences with variable lengths. Each ChordMixer block consists of a positionwise rotation layer without learnable parameters and an element-wise MLP layer. Repeatedly applying such blocks forms an effective network backbone that mixes the input signals towards the learning targets. We have tested ChordMixer on the synthetic adding problem, long document classification, and DNA sequence-based taxonomy classification. The experiment results show that our method substantially outperforms other neural attention models. Sequential data appear widely in data science. In many domains, the sequences have a diverse distribution of lengths. Meanwhile, long-range interactions between DNA elements are common and can be up to 20,000 bases away (Gasperini et al., 2020). Modeling interactions in such sequences is a fundamental problem in machine learning and brings great challenges to attention approaches based on deep neural networks. Most existing neural attention methods cannot handle long sequences with different lengths. For efficient batch processing, architectures such as Transformer and its variants have been proposed, they usually assume constant input length.


T-SNE Is Not Optimized to Reveal Clusters in Data

arXiv.org Machine Learning

The rapid growth in the amount of data processed by analysts demands more efficient information digestion and communication methods. Data visualization by dimensionality reduction facilitates a viewer to digest information in massive data sets quickly. Therefore, it is increasingly applied as a critical component in scientific research, digital libraries, data mining, financial data analysis, market studies, manufacturing production control, drug discovery, etc. Stochastic Neighbor Embedding (SNE) [4] is a widely used nonlinear dimensionality reduction (NLDR) method, which approximately preserves the pairwise probabilities of being neighbors (neighboring probabilities for short) in the input space. In particular, the Student t-Distributed Stochastic Neighbor Embedding (t-SNE) [9] has become one of the most popular nonlinear dimensionality reduction methods for data visualization. The t-SNE method employs a heavy-tailed distribution for the neighboring probabilities in the embedding and minimizes their Kullback-Leibler divergence against the precomputed input probabilities.


Heavy-Tailed Symmetric Stochastic Neighbor Embedding

Neural Information Processing Systems

Stochastic Neighbor Embedding (SNE) has shown to be quite promising for data visualization. Currently, the most popular implementation, t-SNE, is restricted to a particular Student t-distribution as its embedding distribution. Moreover, it uses a gradient descent algorithm that may require users to tune parameters such as the learning step size, momentum, etc., in finding its optimum. In this paper, we propose the Heavy-tailed Symmetric Stochastic Neighbor Embedding (HSSNE) method, which is a generalization of the t-SNE to accommodate various heavy-tailed embedding similarity functions. With this generalization, we are presented with two difficulties.


Adaptive Regularization for Transductive Support Vector Machine

Neural Information Processing Systems

We discuss the framework of Transductive Support Vector Machine (TSVM) from the perspective of the regularization strength induced by the unlabeled data. In this framework, SVM and TSVM can be regarded as a learning machine without regularization and one with full regularization from the unlabeled data, respectively. Therefore, to supplement this framework of the regularization strength, it is necessary to introduce data-dependant partial regularization. To this end, we reformulate TSVM into a form with controllable regularization strength, which includes SVM and TSVM as special cases. Furthermore, we introduce a method of adaptive regularization that is data dependant and is based on the smoothness assumption.


Word Embedding based on Low-Rank Doubly Stochastic Matrix Decomposition

arXiv.org Machine Learning

Word embedding, which encodes words into vectors, is an important starting point in natural language processing and commonly used in many text-based machine learning tasks. However, in most current word embedding approaches, the similarity in embedding space is not optimized in the learning. In this paper we propose a novel neighbor embedding method which directly learns an embedding simplex where the similarities between the mapped words are optimal in terms of minimal discrepancy to the input neighborhoods. Our method is built upon two-step random walks between words via topics and thus able to better reveal the topics among the words. Experiment results indicate that our method, compared with another existing word embedding approach, is more favorable for various queries.


Clustering by Nonnegative Matrix Factorization Using Graph Random Walk

Neural Information Processing Systems

Nonnegative Matrix Factorization (NMF) is a promising relaxation technique for clustering analysis. However, conventional NMF methods that directly approximate the pairwise similarities using the least square error often yield mediocre performance for data in curved manifolds because they can capture only the immediate similarities between data samples. Here we propose a new NMF clustering method which replaces the approximated matrix with its smoothed version using random walk. Our method can thus accommodate farther relationships between data samples. Furthermore, we introduce a novel regularization in the proposed objective function in order to improve over spectral clustering. The new learning objective is optimized by a multiplicative Majorization-Minimization algorithm with a scalable implementation for learning the factorizing matrix. Extensive experimental results on real-world datasets show that our method has strong performance in terms of cluster purity.


Adaptive Regularization for Transductive Support Vector Machine

Neural Information Processing Systems

We discuss the framework of Transductive Support Vector Machine (TSVM) from the perspective of the regularization strength induced by the unlabeled data. In this framework, SVM and TSVM can be regarded as a learning machine without regularization and one with full regularization from the unlabeled data, respectively. Therefore, to supplement this framework of the regularization strength, it is necessary to introduce data-dependant partial regularization. To this end, we reformulate TSVM into a form with controllable regularization strength, which includes SVM and TSVM as special cases. Furthermore, we introduce a method of adaptive regularization that is data dependant and is based on the smoothness assumption. Experiments on a set of benchmark data sets indicate the promising results of the proposed work compared with state-of-the-art TSVM algorithms.


Heavy-Tailed Symmetric Stochastic Neighbor Embedding

Neural Information Processing Systems

Stochastic Neighbor Embedding (SNE) has shown to be quite promising for data visualization. Currently, the most popular implementation, t-SNE, is restricted to a particular Student t-distribution as its embedding distribution. Moreover, it uses a gradient descent algorithm that may require users to tune parameters such as the learning step size, momentum, etc., in finding its optimum. In this paper, we propose the Heavy-tailed Symmetric Stochastic Neighbor Embedding (HSSNE) method, which is a generalization of the t-SNE to accommodate various heavy-tailed embedding similarity functions. With this generalization, we are presented with two difficulties. The first is how to select the best embedding similarity among all heavy-tailed functions and the second is how to optimize the objective function once the heave-tailed function has been selected. Our contributions then are: (1) we point out that various heavy-tailed embedding similarities can be characterized by their negative score functions. Based on this finding, we present a parameterized subset of similarity functions for choosing the best tail-heaviness for HSSNE; (2) we present a fixed-point optimization algorithm that can be applied to all heavy-tailed functions and does not require the user to set any parameters; and (3) we present two empirical studies, one for unsupervised visualization showing that our optimization algorithm runs as fast and as good as the best known t-SNE implementation and the other for semi-supervised visualization showing quantitative superiority using the homogeneity measure as well as qualitative advantage in cluster separation over t-SNE.