Goto

Collaborating Authors

 Yang, Zhenning


Curie: Toward Rigorous and Automated Scientific Experimentation with AI Agents

arXiv.org Artificial Intelligence

Scientific experimentation, a cornerstone of human progress, demands rigor in reliability, methodical control, and interpretability to yield meaningful results. Despite the growing capabilities of large language models (LLMs) in automating different aspects of the scientific process, automating rigorous experimentation remains a significant challenge. To address this gap, we propose Curie, an AI agent framework designed to embed rigor into the experimentation process through three key components: an intra-agent rigor module to enhance reliability, an inter-agent rigor module to maintain methodical control, and an experiment knowledge module to enhance interpretability. To evaluate Curie, we design a novel experimental benchmark composed of 46 questions across four computer science domains, derived from influential research papers, and widely adopted open-source projects. Compared to the strongest baseline tested, we achieve a 3.4$\times$ improvement in correctly answering experimental questions. Curie is open-sourced at https://github.com/Just-Curieous/Curie.


Disaggregating Embedding Recommendation Systems with FlexEMR

arXiv.org Artificial Intelligence

Efficiently serving embedding-based recommendation (EMR) models remains a significant challenge due to their increasingly large memory requirements. Today's practice splits the model across many monolithic servers, where a mix of GPUs, CPUs, and DRAM is provisioned in fixed proportions. This approach leads to suboptimal resource utilization and increased costs. Disaggregating embedding operations from neural network inference is a promising solution but raises novel networking challenges. In this paper, we discuss the design of FlexEMR for optimized EMR disaggregation. FlexEMR proposes two sets of techniques to tackle the networking challenges: Leveraging the temporal and spatial locality of embedding lookups to reduce data movement over the network, and designing an optimized multi-threaded RDMA engine for concurrent lookup subrequests. We outline the design space for each technique and present initial results from our early prototype.


Adversarial Attacks and Defense for Conversation Entailment Task

arXiv.org Artificial Intelligence

As the deployment of NLP systems in critical applications grows, ensuring the robustness of large language models (LLMs) against adversarial attacks becomes increasingly important. Large language models excel in various NLP tasks but remain vulnerable to low-cost adversarial attacks. Focusing on the domain of conversation entailment, where multi-turn dialogues serve as premises to verify hypotheses, we fine-tune a transformer model to accurately discern the truthfulness of these hypotheses. Adversaries manipulate hypotheses through synonym swapping, aiming to deceive the model into making incorrect predictions. To counteract these attacks, we implemented innovative fine-tuning techniques and introduced an embedding perturbation loss method to significantly bolster the model's robustness. Our findings not only emphasize the importance of defending against adversarial attacks in NLP but also highlight the real-world implications, suggesting that enhancing model robustness is critical for reliable NLP applications.


Chasing Low-Carbon Electricity for Practical and Sustainable DNN Training

arXiv.org Artificial Intelligence

Deep learning has experienced significant growth in recent years, resulting in increased energy consumption and carbon emission from the use of GPUs for training deep neural networks (DNNs). Answering the call for sustainability, conventional solutions have attempted to move training jobs to locations or time frames with lower carbon intensity. However, moving jobs to other locations may not always be feasible due to large dataset sizes or data regulations. Moreover, postponing training can negatively impact application service quality because the DNNs backing the service are not updated in a timely fashion. In this work, we present a practical solution that reduces the carbon footprint of DNN training without migrating or postponing jobs. Specifically, our solution observes real-time carbon intensity shifts during training and controls the energy consumption of GPUs, thereby reducing carbon footprint while maintaining training performance. Furthermore, in order to proactively adapt to shifting carbon intensity, we propose a lightweight machine learning algorithm that predicts the carbon intensity of the upcoming time frame. Our solution, Chase, reduces the total carbon footprint of training ResNet-50 on ImageNet by 13.6% while only increasing training time by 2.5%.


Pseudo Pixel-level Labeling for Images with Evolving Content

arXiv.org Artificial Intelligence

Annotating images for semantic segmentation requires intense manual labor and is a time-consuming and expensive task especially for domains with a scarcity of experts, such as Forensic Anthropology. We leverage the evolving nature of images depicting the decay process in human decomposition data to design a simple yet effective pseudo-pixel-level label generation technique to reduce the amount of effort for manual annotation of such images. We first identify sequences of images with a minimum variation that are most suitable to share the same or similar annotation using an unsupervised approach. Given one user-annotated image in each sequence, we propagate the annotation to the remaining images in the sequence by merging it with annotations produced by a state-of-the-art CAM-based pseudo label generation technique. To evaluate the quality of our pseudo-pixel-level labels, we train two semantic segmentation models with VGG and ResNet backbones on images labeled using our pseudo labeling method and those of a state-of-the-art method. The results indicate that using our pseudo-labels instead of those generated using the state-of-the-art method in the training process improves the mean-IoU and the frequency-weighted-IoU of the VGG and ResNet-based semantic segmentation models by 3.36%, 2.58%, 10.39%, and 12.91% respectively.