Yang, Yuqing
Advancing Mobile GUI Agents: A Verifier-Driven Approach to Practical Deployment
Dai, Gaole, Jiang, Shiqi, Cao, Ting, Li, Yuanchun, Yang, Yuqing, Tan, Rui, Li, Mo, Qiu, Lili
We propose V-Droid, a mobile GUI task automation agent. Unlike previous mobile agents that utilize Large Language Models (LLMs) as generators to directly generate actions at each step, V-Droid employs LLMs as verifiers to evaluate candidate actions before making final decisions. To realize this novel paradigm, we introduce a comprehensive framework for constructing verifier-driven mobile agents: the discretized action space construction coupled with the prefilling-only workflow to accelerate the verification process, the pair-wise progress preference training to significantly enhance the verifier's decision-making capabilities, and the scalable human-agent joint annotation scheme to efficiently collect the necessary data at scale. V-Droid sets a new state-of-the-art task success rate across several public mobile task automation benchmarks: 59.5% on AndroidWorld, 38.3% on AndroidLab, and 49% on MobileAgentBench, surpassing existing agents by 9.5%, 2.1%, and 9%, respectively. Furthermore, V-Droid achieves an impressively low latency of 0.7 seconds per step, making it the first mobile agent capable of delivering near-real-time, effective decision-making capabilities.
HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models
Zhou, Ziqin, Yang, Yifan, Yang, Yuqing, He, Tianyu, Peng, Houwen, Qiu, Kai, Dai, Qi, Qiu, Lili, Luo, Chong, Liu, Lingqiao
Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
Region-Adaptive Sampling for Diffusion Transformers
Liu, Ziming, Yang, Yifan, Zhang, Chengruidong, Zhang, Yiqi, Qiu, Lili, You, Yang, Yang, Yuqing
Diffusion models (DMs) have become the leading choice for generative tasks across diverse domains. However, their reliance on multiple sequential forward passes significantly limits real-time performance. Previous acceleration methods have primarily focused on reducing the number of sampling steps or reusing intermediate results, failing to leverage variations across spatial regions within the image due to the constraints of convolutional U-Net structures. By harnessing the flexibility of Diffusion Transformers (DiTs) in handling variable number of tokens, we introduce RAS, a novel, training-free sampling strategy that dynamically assigns different sampling ratios to regions within an image based on the focus of the DiT model. Our key observation is that during each sampling step, the model concentrates on semantically meaningful regions, and these areas of focus exhibit strong continuity across consecutive steps. Leveraging this insight, RAS updates only the regions currently in focus, while other regions are updated using cached noise from the previous step. The model's focus is determined based on the output from the preceding step, capitalizing on the temporal consistency we observed. We evaluate RAS on Stable Diffusion 3 and Lumina-Next-T2I, achieving speedups up to 2.36x and 2.51x, respectively, with minimal degradation in generation quality. Additionally, a user study reveals that RAS delivers comparable qualities under human evaluation while achieving a 1.6x speedup. Our approach makes a significant step towards more efficient diffusion transformers, enhancing their potential for real-time applications.
On Memory Construction and Retrieval for Personalized Conversational Agents
Pan, Zhuoshi, Wu, Qianhui, Jiang, Huiqiang, Luo, Xufang, Cheng, Hao, Li, Dongsheng, Yang, Yuqing, Lin, Chin-Yew, Zhao, H. Vicky, Qiu, Lili, Gao, Jianfeng
To deliver coherent and personalized experiences in long-term conversations, existing approaches typically perform retrieval augmented response generation by constructing memory banks from conversation history at either the turn-level, session-level, or through summarization techniques. In this paper, we present two key findings: (1) The granularity of memory unit matters: Turn-level, session-level, and summarization-based methods each exhibit limitations in both memory retrieval accuracy and the semantic quality of the retrieved content. (2) Prompt compression methods, such as \textit{LLMLingua-2}, can effectively serve as a denoising mechanism, enhancing memory retrieval accuracy across different granularities. Building on these insights, we propose SeCom, a method that constructs a memory bank with topical segments by introducing a conversation Segmentation model, while performing memory retrieval based on Compressed memory units. Experimental results show that SeCom outperforms turn-level, session-level, and several summarization-based methods on long-term conversation benchmarks such as LOCOMO and Long-MT-Bench+. Additionally, the proposed conversation segmentation method demonstrates superior performance on dialogue segmentation datasets such as DialSeg711, TIAGE, and SuperDialSeg.
Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization
Liu, Yuanye, Xu, Jiahang, Zhang, Li Lyna, Chen, Qi, Feng, Xuan, Chen, Yang, Guo, Zhongxin, Yang, Yuqing, Cheng, Peng
Large Language Models (LLMs) have shown significant capability across various tasks, with their real-world effectiveness often driven by prompt design. While recent research has focused on optimizing prompt content, the role of prompt formatting, a critical but often overlooked dimension, has received limited systematic investigation. In this paper, we introduce Content-Format Integrated Prompt Optimization (CFPO), an innovative methodology that jointly optimizes both prompt content and formatting through an iterative refinement process. CFPO leverages natural language mutations to explore content variations and employs a dynamic format exploration strategy that systematically evaluates diverse format options. Our extensive evaluations across multiple tasks and open-source LLMs demonstrate that CFPO demonstrates measurable performance improvements compared to content-only optimization methods. This highlights the importance of integrated content-format optimization and offers a practical, model-agnostic approach to enhancing LLM performance. Code is available at https://github.com/HenryLau7/CFPO.
SCBench: A KV Cache-Centric Analysis of Long-Context Methods
Li, Yucheng, Jiang, Huiqiang, Wu, Qianhui, Luo, Xufang, Ahn, Surin, Zhang, Chengruidong, Abdi, Amir H., Li, Dongsheng, Gao, Jianfeng, Yang, Yuqing, Qiu, Lili
Long-context LLMs have enabled numerous downstream applications but also introduced significant challenges related to computational and memory efficiency. To address these challenges, optimizations for long-context inference have been developed, centered around the KV cache. However, existing benchmarks often evaluate in single-request, neglecting the full lifecycle of the KV cache in real-world use. This oversight is particularly critical, as KV cache reuse has become widely adopted in LLMs inference frameworks, such as vLLM and SGLang, as well as by LLM providers, including OpenAI, Microsoft, Google, and Anthropic. To address this gap, we introduce SCBench(SharedContextBench), a comprehensive benchmark for evaluating long-context methods from a KV cachecentric perspective: 1) KV cache generation, 2) KV cache compression, 3) KV cache retrieval, 4) KV cache loading. Specifically, SCBench uses test examples with shared context, ranging 12 tasks with two shared context modes, covering four categories of long-context capabilities: string retrieval, semantic retrieval, global information, and multi-task. With it, we provide an extensive KV cache-centric analysis of eight categories long-context solutions, including Gated Linear RNNs, Mamba-Attention hybrids, and efficient methods such as sparse attention, KV cache dropping, quantization, retrieval, loading, and prompt compression. The evaluation is conducted on 8 long-context LLMs. Our findings show that sub-O(n) memory methods suffer in multi-turn scenarios, while sparse encoding with O(n) memory and sub-O(n^2) pre-filling computation perform robustly. Dynamic sparsity yields more expressive KV caches than static patterns, and layer-level sparsity in hybrid architectures reduces memory usage with strong performance. Additionally, we identify attention distribution shift issues in long-generation scenarios. https://aka.ms/SCBench.
LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation
Huang, Weiquan, Wu, Aoqi, Yang, Yifan, Luo, Xufang, Yang, Yuqing, Hu, Liang, Dai, Qi, Dai, Xiyang, Chen, Dongdong, Luo, Chong, Qiu, Lili
CLIP is a foundational multimodal model that aligns image and text features into a shared space using contrastive learning on large-scale image-text pairs. Its strength lies in leveraging natural language as a rich supervisory signal. With the rapid progress of large language models (LLMs), we explore their potential to further enhance CLIP's multimodal representation learning. This work introduces a fine-tuning approach that integrates LLMs with the pretrained CLIP visual encoder, leveraging LLMs' advanced text understanding and open-world knowledge to improve CLIP's ability to process long and complex captions. To address the challenge of LLMs' autoregressive nature, we propose a caption-to-caption contrastive learning framework to enhance the discriminative power of their outputs. Our method achieves substantial performance gains on various downstream tasks, demonstrating the effectiveness of combining LLMs with CLIP for enhanced multimodal learning.
The Potential and Value of AI Chatbot in Personalized Cognitive Training
Wang, Zilong, Chen, Nan, Qiu, Luna K., Yue, Ling, Guo, Geli, Ou, Yang, Jiang, Shiqi, Yang, Yuqing, Qiu, Lili
In recent years, the rapid aging of the global population has led to an increase in cognitive disorders, such as Alzheimer's disease, presenting significant public health challenges. Although no effective treatments currently exist to reverse Alzheimer's, prevention and early intervention, including cognitive training, are critical. This report explores the potential of AI chatbots in enhancing personalized cognitive training. We introduce ReMe, a web-based framework designed to create AI chatbots that facilitate cognitive training research, specifically targeting episodic memory tasks derived from personal life logs. By leveraging large language models, ReMe provides enhanced user-friendly, interactive, and personalized training experiences. Case studies demonstrate ReMe's effectiveness in engaging users through life recall and open-ended language puzzles, highlighting its potential to improve cognitive training design. Despite promising results, further research is needed to validate training effectiveness through large-scale studies that include cognitive ability evaluations. Overall, ReMe offers a promising approach to personalized cognitive training, utilizing AI capabilities to meet the growing demand for non-pharmacological interventions in cognitive health, with future research aiming to expand its applications and efficacy.
Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely
Zhao, Siyun, Yang, Yuqing, Wang, Zilong, He, Zhiyuan, Qiu, Luna K., Qiu, Lili
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks. Techniques for integrating external data into LLMs, such as Retrieval-Augmented Generation (RAG) and fine-tuning, are gaining increasing attention and widespread application. Nonetheless, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges. These challenges encompass a wide range of issues, from retrieving relevant data and accurately interpreting user intent to fully harnessing the reasoning capabilities of LLMs for complex tasks. We believe that there is no one-size-fits-all solution for data-augmented LLM applications. In practice, underperformance often arises from a failure to correctly identify the core focus of a task or because the task inherently requires a blend of multiple capabilities that must be disentangled for better resolution. In this survey, we propose a RAG task categorization method, classifying user queries into four levels based on the type of external data required and primary focus of the task: explicit fact queries, implicit fact queries, interpretable rationale queries, and hidden rationale queries. We define these levels of queries, provide relevant datasets, and summarize the key challenges and most effective techniques for addressing these challenges. Finally, we discuss three main forms of integrating external data into LLMs: context, small model, and fine-tuning, highlighting their respective strengths, limitations, and the types of problems they are suited to solve. This work aims to help readers thoroughly understand and decompose the data requirements and key bottlenecks in building LLM applications, offering solutions to the different challenges and serving as a guide to systematically developing such applications.
Weak-to-Strong Reasoning
Yang, Yuqing, Ma, Yan, Liu, Pengfei
When large language models (LLMs) exceed human-level capabilities, it becomes increasingly challenging to provide full-scale and accurate supervisions for these models. Weak-to-strong learning, which leverages a less capable model to unlock the latent abilities of a stronger model, proves valuable in this context. Yet, the efficacy of this approach for complex reasoning tasks is still untested. Furthermore, tackling reasoning tasks under the weak-to-strong setting currently lacks efficient methods to avoid blindly imitating the weak supervisor including its errors. In this paper, we introduce a progressive learning framework that enables the strong model to autonomously refine its training data, without requiring input from either a more advanced model or human-annotated data. This framework begins with supervised fine-tuning on a selective small but high-quality dataset, followed by preference optimization on contrastive samples identified by the strong model itself. Extensive experiments on the GSM8K and MATH datasets demonstrate that our method significantly enhances the reasoning capabilities of Llama2-70b using three separate weak models. This method is further validated in a forward-looking experimental setup, where Llama3-8b-instruct effectively supervises Llama3-70b on the highly challenging OlympicArena dataset. This work paves the way for a more scalable and sophisticated strategy to enhance AI reasoning powers.