Yang, Yang
Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations
Xu, Di, Liu, Hengjie, Miao, Xin, O'Connor, Daniel, Scholey, Jessica E., Yang, Wensha, Feng, Mary, Ohliger, Michael, Lin, Hui, Ruan, Dan, Yang, Yang, Sheng, Ke
The scanning time for a fully sampled MRI can be undesirably lengthy. Compressed sensing has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize on new cases. Image-domain-based deep learning methods (e.g., convolutional neural networks) emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition. In comparison, implicit neural representations can model continuous signals in the frequency domain and thus are compatible with arbitrary k-space sampling patterns. The current study develops a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction. k-GINR consists of two stages: 1) supervised training on an existing patient cohort; 2) self-supervised patient-specific optimization. In stage 1, the network is trained with the generative-adversarial network on diverse patients of the same anatomical region supervised by fully sampled acquisition. In stage 2, undersampled k-space data of individual patients is used to tailor the prior-embedded network for patient-specific optimization. The UCSF StarVIBE T1-weighted liver dataset was evaluated on the proposed framework. k-GINR is compared with an image-domain deep learning method, Deep Cascade CNN, and a compressed sensing method. k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations (e.g., 20 times). k-GINR offers great value for direct non-Cartesian k-space reconstruction for new incoming patients across a wide range of accelerations liver anatomy.
Rebalanced Multimodal Learning with Data-aware Unimodal Sampling
Jiang, Qingyuan, Chi, Zhouyang, Ma, Xiao, Mao, Qirong, Yang, Yang, Tang, Jinhui
To address the modality learning degeneration caused by modality imbalance, existing multimodal learning~(MML) approaches primarily attempt to balance the optimization process of each modality from the perspective of model learning. However, almost all existing methods ignore the modality imbalance caused by unimodal data sampling, i.e., equal unimodal data sampling often results in discrepancies in informational content, leading to modality imbalance. Therefore, in this paper, we propose a novel MML approach called \underline{D}ata-aware \underline{U}nimodal \underline{S}ampling~(\method), which aims to dynamically alleviate the modality imbalance caused by sampling. Specifically, we first propose a novel cumulative modality discrepancy to monitor the multimodal learning process. Based on the learning status, we propose a heuristic and a reinforcement learning~(RL)-based data-aware unimodal sampling approaches to adaptively determine the quantity of sampled data at each iteration, thus alleviating the modality imbalance from the perspective of sampling. Meanwhile, our method can be seamlessly incorporated into almost all existing multimodal learning approaches as a plugin. Experiments demonstrate that \method~can achieve the best performance by comparing with diverse state-of-the-art~(SOTA) baselines.
Deep Learning-Powered Electrical Brain Signals Analysis: Advancing Neurological Diagnostics
Li, Jiahe, Chen, Xin, Shen, Fanqi, Chen, Junru, Liu, Yuxin, Zhang, Daoze, Yuan, Zhizhang, Zhao, Fang, Li, Meng, Yang, Yang
Neurological disorders represent significant global health challenges, driving the advancement of brain signal analysis methods. Scalp electroencephalography (EEG) and intracranial electroencephalography (iEEG) are widely used to diagnose and monitor neurological conditions. However, dataset heterogeneity and task variations pose challenges in developing robust deep learning solutions. This review systematically examines recent advances in deep learning approaches for EEG/iEEG-based neurological diagnostics, focusing on applications across 7 neurological conditions using 46 datasets. We explore trends in data utilization, model design, and task-specific adaptations, highlighting the importance of pre-trained multi-task models for scalable, generalizable solutions. To advance research, we propose a standardized benchmark for evaluating models across diverse datasets to enhance reproducibility. This survey emphasizes how recent innovations can transform neurological diagnostics and enable the development of intelligent, adaptable healthcare solutions.
PSCon: Toward Conversational Product Search
Zou, Jie, Aliannejadi, Mohammad, Kanoulas, Evangelos, Han, Shuxi, Ma, Heli, Wang, Zheng, Yang, Yang, Shen, Heng Tao
Conversational Product Search (CPS) is confined to simulated conversations due to the lack of real-world CPS datasets that reflect human-like language. Additionally, current conversational datasets are limited to support cross-market and multi-lingual usage. In this paper, we introduce a new CPS data collection protocol and present PSCon, a novel CPS dataset designed to assist product search via human-like conversations. The dataset is constructed using a coached human-to-human data collection protocol and supports two languages and dual markets. Also, the dataset enables thorough exploration of six subtasks of CPS: user intent detection, keyword extraction, system action prediction, question selection, item ranking, and response generation. Furthermore, we also offer an analysis of the dataset and propose a benchmark model on the proposed CPS dataset.
Spiking Vision Transformer with Saccadic Attention
Wang, Shuai, Zhang, Malu, Zhang, Dehao, Belatreche, Ammar, Xiao, Yichen, Liang, Yu, Shan, Yimeng, Sun, Qian, Zhang, Enqi, Yang, Yang
The combination of Spiking Neural Networks (SNNs) and Vision Transformers (ViTs) holds potential for achieving both energy efficiency and high performance, particularly suitable for edge vision applications. However, a significant performance gap still exists between SNN-based ViTs and their ANN counterparts. Here, we first analyze why SNN-based ViTs suffer from limited performance and identify a mismatch between the vanilla self-attention mechanism and spatio-temporal spike trains. This mismatch results in degraded spatial relevance and limited temporal interactions. To address these issues, we draw inspiration from biological saccadic attention mechanisms and introduce an innovative Saccadic Spike Self-Attention (SSSA) method. Specifically, in the spatial domain, SSSA employs a novel spike distribution-based method to effectively assess the relevance between Query and Key pairs in SNN-based ViTs. Temporally, SSSA employs a saccadic interaction module that dynamically focuses on selected visual areas at each timestep and significantly enhances whole scene understanding through temporal interactions. Building on the SSSA mechanism, we develop a SNN-based Vision Transformer (SNN-ViT). Extensive experiments across various visual tasks demonstrate that SNN-ViT achieves state-of-the-art performance with linear computational complexity. The effectiveness and efficiency of the SNN-ViT highlight its potential for power-critical edge vision applications.
MSE-Adapter: A Lightweight Plugin Endowing LLMs with the Capability to Perform Multimodal Sentiment Analysis and Emotion Recognition
Yang, Yang, Dong, Xunde, Qiang, Yupeng
Current Multimodal Sentiment Analysis (MSA) and Emotion Recognition in Conversations (ERC) methods based on pre-trained language models exhibit two primary limitations: 1) Once trained for MSA and ERC tasks, these pre-trained language models lose their original generalized capabilities. 2) They demand considerable computational resources. As the size of pre-trained language models continues to grow, training larger multimodal sentiment analysis models using previous approaches could result in unnecessary computational cost. In response to this challenge, we propose \textbf{M}ultimodal \textbf{S}entiment Analysis and \textbf{E}motion Recognition \textbf{Adapter} (MSE-Adapter), a lightweight and adaptable plugin. This plugin enables a large language model (LLM) to carry out MSA or ERC tasks with minimal computational overhead (only introduces approximately 2.6M to 2.8M trainable parameters upon the 6/7B models), while preserving the intrinsic capabilities of the LLM. In the MSE-Adapter, the Text-Guide-Mixer (TGM) module is introduced to establish explicit connections between non-textual and textual modalities through the Hadamard product. This allows non-textual modalities to better align with textual modalities at the feature level, promoting the generation of higher-quality pseudo tokens. Extensive experiments were conducted on four public English and Chinese datasets using consumer-grade GPUs and open-source LLMs (Qwen-1.8B, ChatGLM3-6B-base, and LLaMA2-7B) as the backbone. The results demonstrate the effectiveness of the proposed plugin. The code will be released on GitHub after a blind review.
KAA: Kolmogorov-Arnold Attention for Enhancing Attentive Graph Neural Networks
Fang, Taoran, Gao, Tianhong, Wang, Chunping, Shang, Yihao, Chow, Wei, Chen, Lei, Yang, Yang
Graph neural networks (GNNs) with attention mechanisms, often referred to as attentive GNNs, have emerged as a prominent paradigm in advanced GNN models in recent years. However, our understanding of the critical process of scoring neighbor nodes remains limited, leading to the underperformance of many existing attentive GNNs. In this paper, we unify the scoring functions of current attentive GNNs and propose Kolmogorov-Arnold Attention (KAA), which integrates the Kolmogorov-Arnold Network (KAN) architecture into the scoring process. KAA enhances the performance of scoring functions across the board and can be applied to nearly all existing attentive GNNs. To compare the expressive power of KAA with other scoring functions, we introduce Maximum Ranking Distance (MRD) to quantitatively estimate their upper bounds in ranking errors for node importance. Our analysis reveals that, under limited parameters and constraints on width and depth, both linear transformation-based and MLP-based scoring functions exhibit finite expressive power. In contrast, our proposed KAA, even with a single-layer KAN parameterized by zero-order B-spline functions, demonstrates nearly infinite expressive power. Extensive experiments on both node-level and graph-level tasks using various backbone models show that KAA-enhanced scoring functions consistently outperform their original counterparts, achieving performance improvements of over 20% in some cases.
3rd Workshop on Maritime Computer Vision (MaCVi) 2025: Challenge Results
Kiefer, Benjamin, ลฝust, Lojze, Muhoviฤ, Jon, Kristan, Matej, Perลก, Janez, Terลกek, Matija, Desai, Uma Mudenagudi Chaitra, Wiliem, Arnold, Kreis, Marten, Akalwadi, Nikhil, Quan, Yitong, Zhong, Zhiqiang, Zhang, Zhe, Liu, Sujie, Chen, Xuran, Yang, Yang, Fabijaniฤ, Matej, Ferreira, Fausto, Lee, Seongju, Lee, Junseok, Lee, Kyoobin, Yao, Shanliang, Guan, Runwei, Huang, Xiaoyu, Ni, Yi, Kumar, Himanshu, Feng, Yuan, Cheng, Yi-Ching, Lin, Tzu-Yu, Lee, Chia-Ming, Hsu, Chih-Chung, Sheikh, Jannik, Michel, Andreas, Gross, Wolfgang, Weinmann, Martin, ล ariฤ, Josip, Lin, Yipeng, Yang, Xiang, Jiang, Nan, Lu, Yutang, Feng, Fei, Awad, Ali, Lucas, Evan, Saleem, Ashraf, Cheng, Ching-Heng, Lin, Yu-Fan, Lin, Tzu-Yu, Hsu, Chih-Chung
The 3rd Workshop on Maritime Computer Vision (MaCVi) 2025 addresses maritime computer vision for Unmanned Surface Vehicles (USV) and underwater. This report offers a comprehensive overview of the findings from the challenges. We provide both statistical and qualitative analyses, evaluating trends from over 700 submissions. All datasets, evaluation code, and the leaderboard are available to the public at https://macvi.org/workshop/macvi25.
Fitting Different Interactive Information: Joint Classification of Emotion and Intention
Li, Xinger, Zhong, Zhiqiang, Huang, Bo, Yang, Yang
This paper is the first-place solution for ICASSP MEIJU@2025 Track I, which focuses on low-resource multimodal emotion and intention recognition. How to effectively utilize a large amount of unlabeled data, while ensuring the mutual promotion of different difficulty levels tasks in the interaction stage, these two points become the key to the competition. In this paper, pseudo-label labeling is carried out on the model trained with labeled data, and samples with high confidence and their labels are selected to alleviate the problem of low resources. At the same time, the characteristic of easy represented ability of intention recognition found in the experiment is used to make mutually promote with emotion recognition under different attention heads, and higher performance of intention recognition is achieved through fusion. Finally, under the refined processing data, we achieve the score of 0.5532 in the Test set, and win the championship of the track.
Attribute-Based Robotic Grasping with Data-Efficient Adaptation
Yang, Yang, Yu, Houjian, Lou, Xibai, Liu, Yuanhao, Choi, Changhyun
Robotic grasping is one of the most fundamental robotic manipulation tasks and has been the subject of extensive research. However, swiftly teaching a robot to grasp a novel target object in clutter remains challenging. This paper attempts to address the challenge by leveraging object attributes that facilitate recognition, grasping, and rapid adaptation to new domains. In this work, we present an end-to-end encoder-decoder network to learn attribute-based robotic grasping with data-efficient adaptation capability. We first pre-train the end-to-end model with a variety of basic objects to learn generic attribute representation for recognition and grasping. Our approach fuses the embeddings of a workspace image and a query text using a gated-attention mechanism and learns to predict instance grasping affordances. To train the joint embedding space of visual and textual attributes, the robot utilizes object persistence before and after grasping. Our model is self-supervised in a simulation that only uses basic objects of various colors and shapes but generalizes to novel objects in new environments. To further facilitate generalization, we propose two adaptation methods, adversarial adaption and one-grasp adaptation. Adversarial adaptation regulates the image encoder using augmented data of unlabeled images, whereas one-grasp adaptation updates the overall end-to-end model using augmented data from one grasp trial. Both adaptation methods are data-efficient and considerably improve instance grasping performance. Experimental results in both simulation and the real world demonstrate that our approach achieves over 81% instance grasping success rate on unknown objects, which outperforms several baselines by large margins.