Goto

Collaborating Authors

 Yang, Tianpei


Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation

arXiv.org Artificial Intelligence

Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble models, rollouting conservative estimation to mitigate extrapolation errors. However, the static data makes it challenging to develop a robust policy, and offline agents cannot access the environment to gather new data. To address these challenges, we introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation (MORAL). In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models to enrich training data. Specifically, this adversarial process dynamically selects ensemble models against policy for biased sampling, mitigating the optimistic estimation of fixed models, thus robustly expanding the training data for policy optimization. Moreover, a differential factor is integrated into the adversarial process for regularization, ensuring error minimization in extrapolations. This data-augmented optimization adapts to diverse offline tasks without rollout horizon tuning, showing remarkable applicability. Extensive experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.


MDTeamGPT: A Self-Evolving LLM-based Multi-Agent Framework for Multi-Disciplinary Team Medical Consultation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have made significant progress in various fields. However, challenges remain in Multi-Disciplinary Team (MDT) medical consultations. Current research enhances reasoning through role assignment, task decomposition, and accumulation of medical experience. Multi-role collaboration in MDT consultations often results in excessively long dialogue histories. This increases the model's cognitive burden and degrades both efficiency and accuracy. Some methods only store treatment histories. They do not extract effective experience or reflect on errors. This limits knowledge generalization and system evolution. We propose a multi-agent MDT medical consultation framework based on LLMs to address these issues. Our framework uses consensus aggregation and a residual discussion structure for multi-round consultations. It also employs a Correct Answer Knowledge Base (CorrectKB) and a Chain-of-Thought Knowledge Base (ChainKB) to accumulate consultation experience. These mechanisms enable the framework to evolve and continually improve diagnosis rationality and accuracy. Experimental results on the MedQA and PubMedQA datasets demonstrate that our framework achieves accuracies of 90.1% and 83.9%, respectively, and that the constructed knowledge bases generalize effectively across test sets from both datasets.


Asynchronous Predictive Counterfactual Regret Minimization$^+$ Algorithm in Solving Extensive-Form Games

arXiv.org Artificial Intelligence

Counterfactual Regret Minimization (CFR) algorithms are widely used to compute a Nash equilibrium (NE) in two-player zero-sum imperfect-information extensive-form games (IIGs). Among them, Predictive CFR$^+$ (PCFR$^+$) is particularly powerful, achieving an exceptionally fast empirical convergence rate via the prediction in many games. However, the empirical convergence rate of PCFR$^+$ would significantly degrade if the prediction is inaccurate, leading to unstable performance on certain IIGs. To enhance the robustness of PCFR$^+$, we propose a novel variant, Asynchronous PCFR$^+$ (APCFR$^+$), which employs an adaptive asynchronization of step-sizes between the updates of implicit and explicit accumulated counterfactual regrets to mitigate the impact of the prediction inaccuracy on convergence. We present a theoretical analysis demonstrating why APCFR$^+$ can enhance the robustness. Finally, we propose a simplified version of APCFR$^+$ called Simple APCFR$^+$ (SAPCFR$^+$), which uses a fixed asynchronization of step-sizes to simplify the implementation that only needs a single-line modification of the original PCFR+. Interestingly, SAPCFR$^+$ achieves a constant-factor lower theoretical regret bound than PCFR$^+$ in the worst case. Experimental results demonstrate that (i) both APCFR$^+$ and SAPCFR$^+$ outperform PCFR$^+$ in most of the tested games, as well as (ii) SAPCFR$^+$ achieves a comparable empirical convergence rate with APCFR$^+$.


The Evolving Landscape of LLM- and VLM-Integrated Reinforcement Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has shown impressive results in sequential decision-making tasks. Meanwhile, Large Language Models (LLMs) and Vision-Language Models (VLMs) have emerged, exhibiting impressive capabilities in multimodal understanding and reasoning. These advances have led to a surge of research integrating LLMs and VLMs into RL. In this survey, we review representative works in which LLMs and VLMs are used to overcome key challenges in RL, such as lack of prior knowledge, long-horizon planning, and reward design. We present a taxonomy that categorizes these LLM/VLM-assisted RL approaches into three roles: agent, planner, and reward. We conclude by exploring open problems, including grounding, bias mitigation, improved representations, and action advice. By consolidating existing research and identifying future directions, this survey establishes a framework for integrating LLMs and VLMs into RL, advancing approaches that unify natural language and visual understanding with sequential decision-making.


SafeDialBench: A Fine-Grained Safety Benchmark for Large Language Models in Multi-Turn Dialogues with Diverse Jailbreak Attacks

arXiv.org Artificial Intelligence

With the rapid advancement of Large Language Models (LLMs), the safety of LLMs has been a critical concern requiring precise assessment. Current benchmarks primarily concentrate on single-turn dialogues or a single jailbreak attack method to assess the safety. Additionally, these benchmarks have not taken into account the LLM's capability of identifying and handling unsafe information in detail. To address these issues, we propose a fine-grained benchmark SafeDialBench for evaluating the safety of LLMs across various jailbreak attacks in multi-turn dialogues. Specifically, we design a two-tier hierarchical safety taxonomy that considers 6 safety dimensions and generates more than 4000 multi-turn dialogues in both Chinese and English under 22 dialogue scenarios. We employ 7 jailbreak attack strategies, such as reference attack and purpose reverse, to enhance the dataset quality for dialogue generation. Notably, we construct an innovative assessment framework of LLMs, measuring capabilities in detecting, and handling unsafe information and maintaining consistency when facing jailbreak attacks. Experimental results across 17 LLMs reveal that Yi-34B-Chat and GLM4-9B-Chat demonstrate superior safety performance, while Llama3.1-8B-Instruct and o3-mini exhibit safety vulnerabilities.


Towards Empowerment Gain through Causal Structure Learning in Model-Based RL

arXiv.org Artificial Intelligence

In Model-Based Reinforcement Learning (MBRL), incorporating causal structures into dynamics models provides agents with a structured understanding of the environments, enabling efficient decision. Empowerment as an intrinsic motivation enhances the ability of agents to actively control their environments by maximizing the mutual information between future states and actions. We posit that empowerment coupled with causal understanding can improve controllability, while enhanced empowerment gain can further facilitate causal reasoning in MBRL. To improve learning efficiency and controllability, we propose a novel framework, Empowerment through Causal Learning (ECL), where an agent with the awareness of causal dynamics models achieves empowerment-driven exploration and optimizes its causal structure for task learning. Specifically, ECL operates by first training a causal dynamics model of the environment based on collected data. We then maximize empowerment under the causal structure for exploration, simultaneously using data gathered through exploration to update causal dynamics model to be more controllable than dense dynamics model without causal structure. In downstream task learning, an intrinsic curiosity reward is included to balance the causality, mitigating overfitting. Importantly, ECL is method-agnostic and is capable of integrating various causal discovery methods. We evaluate ECL combined with 3 causal discovery methods across 6 environments including pixel-based tasks, demonstrating its superior performance compared to other causal MBRL methods, in terms of causal discovery, sample efficiency, and asymptotic performance.


Causal Information Prioritization for Efficient Reinforcement Learning

arXiv.org Artificial Intelligence

Current Reinforcement Learning (RL) methods often suffer from sample-inefficiency, resulting from blind exploration strategies that neglect causal relationships among states, actions, and rewards. Although recent causal approaches aim to address this problem, they lack grounded modeling of reward-guided causal understanding of states and actions for goal-orientation, thus impairing learning efficiency. To tackle this issue, we propose a novel method named Causal Information Prioritization (CIP) that improves sample efficiency by leveraging factored MDPs to infer causal relationships between different dimensions of states and actions with respect to rewards, enabling the prioritization of causal information. Specifically, CIP identifies and leverages causal relationships between states and rewards to execute counterfactual data augmentation to prioritize high-impact state features under the causal understanding of the environments. Moreover, CIP integrates a causality-aware empowerment learning objective, which significantly enhances the agent's execution of reward-guided actions for more efficient exploration in complex environments. To fully assess the effectiveness of CIP, we conduct extensive experiments across 39 tasks in 5 diverse continuous control environments, encompassing both locomotion and manipulation skills learning with pixel-based and sparse reward settings. Experimental results demonstrate that CIP consistently outperforms existing RL methods across a wide range of scenarios.


FPGA Divide-and-Conquer Placement using Deep Reinforcement Learning

arXiv.org Artificial Intelligence

This paper introduces the problem of learning to place logic blocks in Field-Programmable Gate Arrays (FPGAs) and a learning-based method. In contrast to previous search-based placement algorithms, we instead employ Reinforcement Learning (RL) with the goal of minimizing wirelength. In addition to our preliminary learning results, we also evaluated a novel decomposition to address the nature of large search space when placing many blocks on a chipboard. Empirical experiments evaluate the effectiveness of the learning and decomposition paradigms on FPGA placement tasks.


LaFFi: Leveraging Hybrid Natural Language Feedback for Fine-tuning Language Models

arXiv.org Artificial Intelligence

Fine-tuning Large Language Models (LLMs) adapts a trained model to specific downstream tasks, significantly improving task-specific performance. Supervised Fine-Tuning (SFT) is a common approach, where an LLM is trained to produce desired answers. However, LLMs trained with SFT sometimes make simple mistakes and result in hallucinations on reasoning tasks such as question-answering. Without external feedback, it is difficult for SFT to learn a good mapping between the question and the desired answer, especially with a small dataset. This paper introduces an alternative to SFT called Natural Language Feedback for Finetuning LLMs (LaFFi). LaFFi has LLMs directly predict the feedback they will receive from an annotator. We find that requiring such reflection can significantly improve the accuracy in in-domain question-answering tasks, providing a promising direction for the application of natural language feedback in the realm of SFT LLMs. Additional ablation studies show that the portion of human-annotated data in the annotated datasets affects the fine-tuning performance.


Taming Multi-Agent Reinforcement Learning with Estimator Variance Reduction

arXiv.org Artificial Intelligence

Centralised training with decentralised execution (CT-DE) serves as the foundation of many leading multi-agent reinforcement learning (MARL) algorithms. Despite its popularity, it suffers from a critical drawback due to its reliance on learning from a single sample of the joint-action at a given state. As agents explore and update their policies during training, these single samples may poorly represent the actual joint-policy of the system of agents leading to high variance gradient estimates that hinder learning. To address this problem, we propose an enhancement tool that accommodates any actor-critic MARL method. Our framework, Performance Enhancing Reinforcement Learning Apparatus (PERLA), introduces a sampling technique of the agents' joint-policy into the critics while the agents train. This leads to TD updates that closely approximate the true expected value under the current joint-policy rather than estimates from a single sample of the joint-action at a given state. This produces low variance and precise estimates of expected returns, minimising the variance in the critic estimators which typically hinders learning. Moreover, as we demonstrate, by eliminating much of the critic variance from the single sampling of the joint policy, PERLA enables CT-DE methods to scale more efficiently with the number of agents. Theoretically, we prove that PERLA reduces variance in value estimates similar to that of decentralised training while maintaining the benefits of centralised training. Empirically, we demonstrate PERLA's superior performance and ability to reduce estimator variance in a range of benchmarks including Multi-agent Mujoco, and StarCraft II Multi-agent Challenge.