Goto

Collaborating Authors

 Yang, Sichen


Exact Recovery of Community Detection in dependent Gaussian Mixture Models

arXiv.org Machine Learning

We study the community detection problem on a Gaussian mixture model, in which (1) vertices are divided into $k\geq 2$ distinct communities that are not necessarily equally-sized; (2) the Gaussian perturbations for different entries in the observation matrix are not necessarily independent or identically distributed. We prove necessary and sufficient conditions for the exact recovery of the maximum likelihood estimation (MLE), and discuss the cases when these necessary and sufficient conditions give sharp threshold. Applications include the community detection on a graph where the Gaussian perturbations of observations on each edge is the sum of i.i.d.~Gaussian random variables on its end vertices, in which we explicitly obtain the threshold for the exact recovery of the MLE.


Nonlinear model reduction for slow-fast stochastic systems near manifolds

arXiv.org Machine Learning

We introduce a nonlinear stochastic model reduction technique for high-dimensional stochastic dynamical systems that have a low-dimensional invariant effective manifold with slow dynamics, and high-dimensional, large fast modes. Given only access to a black box simulator from which short bursts of simulation can be obtained, we estimate the invariant manifold, a process of the effective (stochastic) dynamics on it, and construct an efficient simulator thereof. These estimation steps can be performed on-the-fly, leading to efficient exploration of the effective state space, without losing consistency with the underlying dynamics. This construction enables fast and efficient simulation of paths of the effective dynamics, together with estimation of crucial features and observables of such dynamics, including the stationary distribution, identification of metastable states, and residence times and transition rates between them.