Goto

Collaborating Authors

 Yang, Scott


Optimistic Bandit Convex Optimization

Neural Information Processing Systems

We introduce the general and powerful scheme of predicting information re-use in optimization algorithms. This allows us to devise a computationally efficient algorithm for bandit convex optimization with new state-of-the-art guarantees for both Lipschitz loss functions and loss functions with Lipschitz gradients. This is the first algorithm admitting both a polynomial time complexity and a regret that is polynomial in the dimension of the action space that improves upon the original regret bound for Lipschitz loss functions, achieving a regret of $\widetilde O(T {11/16}d {3/8})$. Our algorithm further improves upon the best existing polynomial-in-dimension bound (both computationally and in terms of regret) for loss functions with Lipschitz gradients, achieving a regret of $\widetilde O(T {8/13} d {5/3})$. Papers published at the Neural Information Processing Systems Conference.


AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles

arXiv.org Machine Learning

AdaNet is a lightweight TensorFlow-based (Abadi et al., 2015) framework for automatically learning high-quality ensembles with minimal expert intervention. Our framework is inspired by the AdaNet algorithm (Cortes et al., 2017) which learns the structure of a neural network as an ensemble of subnetworks. We designed it to: (1) integrate with the existing TensorFlow ecosystem, (2) offer sensible default search spaces to perform well on novel datasets, (3) present a flexible API to utilize expert information when available, and (4) efficiently accelerate training with distributed CPU, GPU, and TPU hardware.


Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses

Neural Information Processing Systems

Many structured prediction problems admit a natural loss function for evaluation such as the edit-distance or $n$-gram loss. However, existing learning algorithms are typically designed to optimize alternative objectives such as the cross-entropy. This is because a na\"{i}ve implementation of the natural loss functions often results in intractable gradient computations. In this paper, we design efficient gradient computation algorithms for two broad families of structured prediction loss functions: rational and tropical losses. These families include as special cases the $n$-gram loss, the edit-distance loss, and many other loss functions commonly used in natural language processing and computational biology tasks that are based on sequence similarity measures. Our algorithms make use of weighted automata and graph operations over appropriate semirings to design efficient solutions. They facilitate efficient gradient computation and hence enable one to train learning models such as neural networks with complex structured losses.


Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses

Neural Information Processing Systems

Many structured prediction problems admit a natural loss function for evaluation such as the edit-distance or n-gram loss. However, existing learning algorithms are typically designed to optimize alternative objectives such as the cross-entropy. This is because a naรฏve implementation of the natural loss functions often results in intractable gradient computations. In this paper, we design efficient gradient computation algorithmsfor two broad families of structured prediction loss functions: rational and tropical losses. These families include as special cases the n-gram loss, the edit-distance loss, and many other loss functions commonly used in natural language processing and computational biology tasks that are based on sequence similarity measures. Our algorithms make use of weighted automata and graph operations over appropriate semirings to design efficient solutions. They facilitate efficient gradient computation and hence enable one to train learning models such as neural networks with complex structured losses.


Semi-automated Annotation of Signal Events in Clinical EEG Data

arXiv.org Machine Learning

To be effective, state of the art machine learning technology needs large amounts of annotated data. There are numerous compelling applications in healthcare that can benefit from high performance automated decision support systems provided by deep learning technology, but they lack the comprehensive data resources required to apply sophisticated machine learning models. Further, for economic reasons, it is very difficult to justify the creation of large annotated corpora for these applications. Hence, automated annotation techniques become increasingly important. In this study, we investigated the effectiveness of using an active learning algorithm to automatically annotate a large EEG corpus. The algorithm is designed to annotate six types of EEG events. Two model training schemes, namely threshold-based and volume-based, are evaluated. In the threshold-based scheme the threshold of confidence scores is optimized in the initial training iteration, whereas for the volume-based scheme only a certain amount of data is preserved after each iteration. Recognition performance is improved 2% absolute and the system is capable of automatically annotating previously unlabeled data. Given that the interpretation of clinical EEG data is an exceedingly difficult task, this study provides some evidence that the proposed method is a viable alternative to expensive manual annotation.


An Analysis of Two Common Reference Points for EEGs

arXiv.org Machine Learning

Clinical electroencephalographic (EEG) data varies significantly depending on a number of operational conditions (e.g., the type and placement of electrodes, the type of electrical grounding used). This investigation explores the statistical differences present in two different referential montages: Linked Ear (LE) and Averaged Reference (AR). Each of these accounts for approximately 45% of the data in the TUH EEG Corpus. In this study, we explore the impact this variability has on machine learning performance. We compare the statistical properties of features generated using these two montages, and explore the impact of performance on our standard Hidden Markov Model (HMM) based classification system. We show that a system trained on LE data significantly outperforms one trained only on AR data (77.2% vs. 61.4%). We also demonstrate that performance of a system trained on both data sets is somewhat compromised (71.4% vs. 77.2%). A statistical analysis of the data suggests that mean, variance and channel normalization should be considered. However, cepstral mean subtraction failed to produce an improvement in performance, suggesting that the impact of these statistical differences is subtler.


Online Learning with Transductive Regret

Neural Information Processing Systems

We study online learning with the general notion of transductive regret, that is regret with modification rules applying to expert sequences (as opposed to single experts) that are representable by weighted finite-state transducers. We show how transductive regret generalizes existing notions of regret, including: (1) external regret; (2) internal regret; (3) swap regret; and (4) conditional swap regret. We present a general and efficient online learning algorithm for minimizing transductive regret. We further extend that to design efficient algorithms for the time-selection and sleeping expert settings. A by-product of our study is an algorithm for swap regret, which, under mild assumptions, is more efficient than existing ones, and a substantially more efficient algorithm for time selection swap regret.


Optimistic Bandit Convex Optimization

Neural Information Processing Systems

We introduce the general and powerful scheme of predicting information re-use in optimization algorithms. This allows us to devise a computationally efficient algorithm for bandit convex optimization with new state-of-the-art guarantees for both Lipschitz loss functions and loss functions with Lipschitz gradients. This is the first algorithm admitting both a polynomial time complexity and a regret that is polynomial in the dimension of the action space that improves upon the original regret bound for Lipschitz loss functions, achieving a regret of $\widetilde O(T^{11/16}d^{3/8})$. Our algorithm further improves upon the best existing polynomial-in-dimension bound (both computationally and in terms of regret) for loss functions with Lipschitz gradients, achieving a regret of $\widetilde O(T^{8/13} d^{5/3})$.


Structured Prediction Theory Based on Factor Graph Complexity

Neural Information Processing Systems

We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction problems. Our guarantees are expressed in terms of a data-dependent complexity measure, \emph{factor graph complexity}, which we show can be estimated from data and bounded in terms of familiar quantities for several commonly used hypothesis sets, and a sparsity measure for features and graphs. Our proof techniques include generalizations of Talagrand's contraction lemma that can be of independent interest. We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and show that learning is possible even with complex factor graphs. We present new learning bounds for this advanced setting, which we use to devise two new algorithms, \emph{Voted Conditional Random Field} (VCRF) and \emph{Voted Structured Boosting} (StructBoost). These algorithms can make use of complex features and factor graphs and yet benefit from favorable learning guarantees. We also report the results of experiments with VCRF on several datasets to validate our theory.


Structured Prediction Theory Based on Factor Graph Complexity

arXiv.org Machine Learning

We present a general theoretical analysis of structured prediction with a series of new results. We give new data-dependent margin guarantees for structured prediction for a very wide family of loss functions and a general family of hypotheses, with an arbitrary factor graph decomposition. These are the tightest margin bounds known for both standard multi-class and general structured prediction problems. Our guarantees are expressed in terms of a data-dependent complexity measure, factor graph complexity, which we show can be estimated from data and bounded in terms of familiar quantities. We further extend our theory by leveraging the principle of Voted Risk Minimization (VRM) and show that learning is possible even with complex factor graphs. We present new learning bounds for this advanced setting, which we use to design two new algorithms, Voted Conditional Random Field (VCRF) and Voted Structured Boosting (StructBoost). These algorithms can make use of complex features and factor graphs and yet benefit from favorable learning guarantees. We also report the results of experiments with VCRF on several datasets to validate our theory.