Goto

Collaborating Authors

 Yang, Ruihan


From Persona to Personalization: A Survey on Role-Playing Language Agents

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have significantly boosted the rise of Role-Playing Language Agents (RPLAs), i.e., specialized AI systems designed to simulate assigned personas. By harnessing multiple advanced abilities of LLMs, including in-context learning, instruction following, and social intelligence, RPLAs achieve a remarkable sense of human likeness and vivid role-playing performance. RPLAs can mimic a wide range of personas, ranging from historical figures and fictional characters to real-life individuals. Consequently, they have catalyzed numerous AI applications, such as emotional companions, interactive video games, personalized assistants and copilots, and digital clones. In this paper, we conduct a comprehensive survey of this field, illustrating the evolution and recent progress in RPLAs integrating with cutting-edge LLM technologies. We categorize personas into three types: 1) Demographic Persona, which leverages statistical stereotypes; 2) Character Persona, focused on well-established figures; and 3) Individualized Persona, customized through ongoing user interactions for personalized services. We begin by presenting a comprehensive overview of current methodologies for RPLAs, followed by the details for each persona type, covering corresponding data sourcing, agent construction, and evaluation. Afterward, we discuss the fundamental risks, existing limitations, and future prospects of RPLAs. Additionally, we provide a brief review of RPLAs in AI applications, which reflects practical user demands that shape and drive RPLA research. Through this work, we aim to establish a clear taxonomy of RPLA research and applications, and facilitate future research in this critical and ever-evolving field, and pave the way for a future where humans and RPLAs coexist in harmony.


Learning Generalizable Feature Fields for Mobile Manipulation

arXiv.org Artificial Intelligence

An open problem in mobile manipulation is how to represent objects and scenes in a unified manner, so that robots can use it both for navigating in the environment and manipulating objects. The latter requires capturing intricate geometry while understanding fine-grained semantics, whereas the former involves capturing the complexity inherit to an expansive physical scale. In this work, we present GeFF (Generalizable Feature Fields), a scene-level generalizable neural feature field that acts as a unified representation for both navigation and manipulation that performs in real-time. To do so, we treat generative novel view synthesis as a pre-training task, and then align the resulting rich scene priors with natural language via CLIP feature distillation. We demonstrate the effectiveness of this approach by deploying GeFF on a quadrupedal robot equipped with a manipulator. We evaluate GeFF's ability to generalize to open-set objects as well as running time, when performing open-vocabulary mobile manipulation in dynamic scenes.


Expressive Whole-Body Control for Humanoid Robots

arXiv.org Artificial Intelligence

Can we enable humanoid robots to generate rich, diverse, and expressive motions in the real world? We propose to learn a whole-body control policy on a human-sized robot to mimic human motions as realistic as possible. To train such a policy, we leverage the large-scale human motion capture data from the graphics community in a Reinforcement Learning framework. However, directly performing imitation learning with the motion capture dataset would not work on the real humanoid robot, given the large gap in degrees of freedom and physical capabilities. Our method Expressive Whole-Body Control (Exbody) tackles this problem by encouraging the upper humanoid body to imitate a reference motion, while relaxing the imitation constraint on its two legs and only requiring them to follow a given velocity robustly. With training in simulation and Sim2Real transfer, our policy can control a humanoid robot to walk in different styles, shake hands with humans, and even dance with a human in the real world. We conduct extensive studies and comparisons on diverse motions in both simulation and the real world to show the effectiveness of our approach.


Hierarchical Autoregressive Modeling for Neural Video Compression

arXiv.org Artificial Intelligence

Recent work by Marino et al. (2020) showed improved performance in sequential density estimation by combining masked autoregressive flows with hierarchical latent variable models. We draw a connection between such autoregressive generative models and the task of lossy video compression. Specifically, we view recent neural video compression methods (Lu et al., 2019; Yang et al., 2020b; Agustssonet al., 2020) as instances of a generalized stochastic temporal autoregressive transform, and propose avenues for enhancement based on this insight. Comprehensive evaluations on large-scale video data show improved rate-distortion performance over both state-of-the-art neural and conventional video compression methods.


Harmonic Mobile Manipulation

arXiv.org Artificial Intelligence

Recent advancements in robotics have enabled robots to navigate complex scenes or manipulate diverse objects independently. However, robots are still impotent in many household tasks requiring coordinated behaviors such as opening doors. The factorization of navigation and manipulation, while effective for some tasks, fails in scenarios requiring coordinated actions. To address this challenge, we introduce, HarmonicMM, an end-to-end learning method that optimizes both navigation and manipulation, showing notable improvement over existing techniques in everyday tasks. This approach is validated in simulated and real-world environments and adapts to novel unseen settings without additional tuning. Our contributions include a new benchmark for mobile manipulation and the successful deployment in a real unseen apartment, demonstrating the potential for practical indoor robot deployment in daily life. More results are on our project site: https://rchalyang.github.io/HarmonicMM/


Probabilistic Precipitation Downscaling with Optical Flow-Guided Diffusion

arXiv.org Machine Learning

In climate science and meteorology, local precipitation predictions are limited by the immense computational costs induced by the high spatial resolution that simulation methods require. A common workaround is statistical downscaling (aka superresolution), where a low-resolution prediction is super-resolved using statistical approaches. While traditional computer vision tasks mainly focus on human perception or mean squared error, applications in weather and climate require capturing the conditional distribution of high-resolution patterns given low-resolution patterns so that reliable ensemble averages can be taken. Our approach relies on extending recent video diffusion models to precipitation superresolution: an optical flow on the high-resolution output induces temporally coherent predictions, whereas a temporally-conditioned diffusion model generates residuals that capture the correct noise characteristics and high-frequency patterns. We test our approach on X-SHiELD, an established large-scale climate simulation dataset, and compare against two state-of-the-art baselines, focusing on CRPS, MSE, precipitation distributions, as well as an illustrative case -- the complex terrain of California. Our approach sets a new standard for data-driven precipitation downscaling.


CMMD: Contrastive Multi-Modal Diffusion for Video-Audio Conditional Modeling

arXiv.org Artificial Intelligence

We introduce a multi-modal diffusion model tailored for the bi-directional conditional generation of video and audio. Recognizing the importance of accurate alignment between video and audio events in multi-modal generation tasks, we propose a joint contrastive training loss to enhance the synchronization between visual and auditory occurrences. Our research methodology involves conducting comprehensive experiments on multiple datasets to thoroughly evaluate the efficacy of our proposed model. The assessment of generation quality and alignment performance is carried out from various angles, encompassing both objective and subjective metrics. Our findings demonstrate that the proposed model outperforms the baseline, substantiating its effectiveness and efficiency. Notably, the incorporation of the contrastive loss results in improvements in audio-visual alignment, particularly in the high-correlation video-to-audio generation task. These results indicate the potential of our proposed model as a robust solution for improving the quality and alignment of multi-modal generation, thereby contributing to the advancement of video and audio conditional generation systems.


Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior

arXiv.org Artificial Intelligence

The agility of animals, particularly in complex activities such as running, turning, jumping, and backflipping, stands as an exemplar for robotic system design. Transferring this suite of behaviors to legged robotic systems introduces essential inquiries: How can a robot be trained to learn multiple locomotion behaviors simultaneously? How can the robot execute these tasks with a smooth transition? And what strategies allow for the integrated application of these skills? This paper introduces the Versatile Instructable Motion prior (VIM) - a Reinforcement Learning framework designed to incorporate a range of agile locomotion tasks suitable for advanced robotic applications. Our framework enables legged robots to learn diverse agile low-level skills by imitating animal motions and manually designed motions with Functionality reward and Stylization reward. While the Functionality reward guides the robot's ability to adopt varied skills, the Stylization reward ensures performance alignment with reference motions. Our evaluations of the VIM framework span both simulation environments and real-world deployment. To our understanding, this is the first work that allows a robot to concurrently learn diverse agile locomotion tasks using a singular controller. Further details and supportive media can be found at our project site: https://rchalyang.github.io/VIM .


Insights from Generative Modeling for Neural Video Compression

arXiv.org Artificial Intelligence

While recent machine learning research has revealed connections between deep generative models such as VAEs and rate-distortion losses used in learned compression, most of this work has focused on images. In a similar spirit, we view recently proposed neural video coding algorithms through the lens of deep autoregressive and latent variable modeling. We present these codecs as instances of a generalized stochastic temporal autoregressive transform, and propose new avenues for further improvements inspired by normalizing flows and structured priors. We propose several architectures that yield state-of-the-art video compression performance on high-resolution video and discuss their tradeoffs and ablations. In particular, we propose (i) improved temporal autoregressive transforms, (ii) improved entropy models with structured and temporal dependencies, and (iii) variable bitrate versions of our algorithms. Since our improvements are compatible with a large class of existing models, we provide further evidence that the generative modeling viewpoint can advance the neural video coding field.


SC2 Benchmark: Supervised Compression for Split Computing

arXiv.org Artificial Intelligence

With the increasing demand for deep learning models on mobile devices, splitting neural network computation between the device and a more powerful edge server has become an attractive solution. However, existing split computing approaches often underperform compared to a naive baseline of remote computation on compressed data. Recent studies propose learning compressed representations that contain more relevant information for supervised downstream tasks, showing improved tradeoffs between compressed data size and supervised performance. However, existing evaluation metrics only provide an incomplete picture of split computing. This study introduces supervised compression for split computing (SC2) and proposes new evaluation criteria: minimizing computation on the mobile device, minimizing transmitted data size, and maximizing model accuracy. We conduct a comprehensive benchmark study using 10 baseline methods, three computer vision tasks, and over 180 trained models, and discuss various aspects of SC2. We also release sc2bench, a Python package for future research on SC2. Our proposed metrics and package will help researchers better understand the tradeoffs of supervised compression in split computing.