Goto

Collaborating Authors

 Yang, Ruihan


The Lighthouse of Language: Enhancing LLM Agents via Critique-Guided Improvement

arXiv.org Artificial Intelligence

Large language models (LLMs) have recently transformed from text-based assistants to autonomous agents capable of planning, reasoning, and iteratively improving their actions. While numerical reward signals and verifiers can effectively rank candidate actions, they often provide limited contextual guidance. In contrast, natural language feedback better aligns with the generative capabilities of LLMs, providing richer and more actionable suggestions. However, parsing and implementing this feedback effectively can be challenging for LLM-based agents. In this work, we introduce Critique-Guided Improvement (CGI), a novel two-player framework, comprising an actor model that explores an environment and a critic model that generates detailed nature language feedback. By training the critic to produce fine-grained assessments and actionable revisions, and the actor to utilize these critiques, our approach promotes more robust exploration of alternative strategies while avoiding local optima. Experiments in three interactive environments show that CGI outperforms existing baselines by a substantial margin. Notably, even a small critic model surpasses GPT-4 in feedback quality. The resulting actor achieves state-of-the-art performance, demonstrating the power of explicit iterative guidance to enhance decision-making in LLM-based agents.


WildLMa: Long Horizon Loco-Manipulation in the Wild

arXiv.org Artificial Intelligence

`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.


LoGU: Long-form Generation with Uncertainty Expressions

arXiv.org Artificial Intelligence

While Large Language Models (LLMs) demonstrate impressive capabilities, they still struggle with generating factually incorrect content (i.e., hallucinations). A promising approach to mitigate this issue is enabling models to express uncertainty when unsure. Previous research on uncertainty modeling has primarily focused on short-form QA, but realworld applications often require much longer responses. In this work, we introduce the task of Long-form Generation with Uncertainty(LoGU). We identify two key challenges: Uncertainty Suppression, where models hesitate to express uncertainty, and Uncertainty Misalignment, where models convey uncertainty inaccurately. To tackle these challenges, we propose a refinement-based data collection framework and a two-stage training pipeline. Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims. The collected data are then used in training through supervised fine-tuning (SFT) and direct preference optimization (DPO) to enhance uncertainty expression. Extensive experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.


Visual Manipulation with Legs

arXiv.org Artificial Intelligence

Animals use limbs for both locomotion and manipulation. We aim to equip quadruped robots with similar versatility. This work introduces a system that enables quadruped robots to interact with objects using their legs, inspired by non-prehensile manipulation. The system has two main components: a visual manipulation policy module and a loco-manipulator module. The visual manipulation policy, trained with reinforcement learning (RL) using point cloud observations and object-centric actions, decides how the leg should interact with the object. The loco-manipulator controller manages leg movements and body pose adjustments, based on impedance control and Model Predictive Control (MPC). Besides manipulating objects with a single leg, the system can select from the left or right leg based on critic maps and move objects to distant goals through base adjustment. Experiments evaluate the system on object pose alignment tasks in both simulation and the real world, demonstrating more versatile object manipulation skills with legs than previous work. Videos can be found at https://legged-manipulation.github.io/


Atomic Calibration of LLMs in Long-Form Generations

arXiv.org Artificial Intelligence

Large language models (LLMs) often suffer from hallucinations, posing significant challenges for real-world applications. Confidence calibration, which estimates the underlying uncertainty of model predictions, is essential to enhance the LLMs' trustworthiness. Existing research on LLM calibration has primarily focused on short-form tasks, providing a single confidence score at the response level (macro calibration). However, this approach is insufficient for long-form generations, where responses often contain more complex statements and may include both accurate and inaccurate information. Therefore, we introduce atomic calibration, a novel approach that evaluates factuality calibration at a fine-grained level by breaking down long responses into atomic claims. We classify confidence elicitation methods into discriminative and generative types and demonstrate that their combination can enhance calibration. Our extensive experiments on various LLMs and datasets show that atomic calibration is well-suited for long-form generation and can also improve macro calibration results. Additionally, atomic calibration reveals insightful patterns in LLM confidence throughout the generation process.


Bunny-VisionPro: Real-Time Bimanual Dexterous Teleoperation for Imitation Learning

arXiv.org Artificial Intelligence

Teleoperation is a crucial tool for collecting human demonstrations, but controlling robots with bimanual dexterous hands remains a challenge. Existing teleoperation systems struggle to handle the complexity of coordinating two hands for intricate manipulations. We introduce Bunny-VisionPro, a real-time bimanual dexterous teleoperation system that leverages a VR headset. Unlike previous vision-based teleoperation systems, we design novel low-cost devices to provide haptic feedback to the operator, enhancing immersion. Our system prioritizes safety by incorporating collision and singularity avoidance while maintaining real-time performance through innovative designs. Bunny-VisionPro outperforms prior systems on a standard task suite, achieving higher success rates and reduced task completion times. Moreover, the high-quality teleoperation demonstrations improve downstream imitation learning performance, leading to better generalizability. Notably, Bunny-VisionPro enables imitation learning with challenging multi-stage, long-horizon dexterous manipulation tasks, which have rarely been addressed in previous work. Our system's ability to handle bimanual manipulations while prioritizing safety and real-time performance makes it a powerful tool for advancing dexterous manipulation and imitation learning.


SelfGoal: Your Language Agents Already Know How to Achieve High-level Goals

arXiv.org Artificial Intelligence

Language agents powered by large language models (LLMs) are increasingly valuable as decision-making tools in domains such as gaming and programming. However, these agents often face challenges in achieving high-level goals without detailed instructions and in adapting to environments where feedback is delayed. In this paper, we present SelfGoal, a novel automatic approach designed to enhance agents' capabilities to achieve high-level goals with limited human prior and environmental feedback. The core concept of SelfGoal involves adaptively breaking down a high-level goal into a tree structure of more practical subgoals during the interaction with environments while identifying the most useful subgoals and progressively updating this structure. Experimental results demonstrate that SelfGoal significantly enhances the performance of language agents across various tasks, including competitive, cooperative, and deferred feedback environments. Project page: https://selfgoal-agent.github.io.


GumbelSoft: Diversified Language Model Watermarking via the GumbelMax-trick

arXiv.org Artificial Intelligence

Large language models (LLMs) excellently generate human-like text, but also raise concerns about misuse in fake news and academic dishonesty. Decoding-based watermark, particularly the GumbelMax-trick-based watermark(GM watermark), is a standout solution for safeguarding machine-generated texts due to its notable detectability. However, GM watermark encounters a major challenge with generation diversity, always yielding identical outputs for the same prompt, negatively impacting generation diversity and user experience. To overcome this limitation, we propose a new type of GM watermark, the Logits-Addition watermark, and its three variants, specifically designed to enhance diversity. Among these, the GumbelSoft watermark (a softmax variant of the Logits-Addition watermark) demonstrates superior performance in high diversity settings, with its AUROC score outperforming those of the two alternative variants by 0.1 to 0.3 and surpassing other decoding-based watermarking methods by a minimum of 0.1.


Fast Samplers for Inverse Problems in Iterative Refinement Models

arXiv.org Machine Learning

Constructing fast samplers for unconditional diffusion and flow-matching models has received much attention recently; however, existing methods for solving inverse problems, such as super-resolution, inpainting, or deblurring, still require hundreds to thousands of iterative steps to obtain high-quality results. We propose a plug-and-play framework for constructing efficient samplers for inverse problems, requiring only pre-trained diffusion or flow-matching models. We present Conditional Conjugate Integrators, which leverage the specific form of the inverse problem to project the respective conditional diffusion/flow dynamics into a more amenable space for sampling. Our method complements popular posterior approximation methods for solving inverse problems using diffusion/flow models. We evaluate the proposed method's performance on various linear image restoration tasks across multiple datasets, employing diffusion and flow-matching models. Notably, on challenging inverse problems like 4$\times$ super-resolution on the ImageNet dataset, our method can generate high-quality samples in as few as 5 conditional sampling steps and outperforms competing baselines requiring 20-1000 steps. Our code and models will be publicly available at https://github.com/mandt-lab/CI2RM.


Visual Whole-Body Control for Legged Loco-Manipulation

arXiv.org Artificial Intelligence

We study the problem of mobile manipulation using legged robots equipped with an arm, namely legged loco-manipulation. The robot legs, while usually utilized for mobility, offer an opportunity to amplify the manipulation capabilities by conducting whole-body control. That is, the robot can control the legs and the arm at the same time to extend its workspace. We propose a framework that can conduct the whole-body control autonomously with visual observations. Our approach, namely Visual Whole-Body Control(VBC), is composed of a low-level policy using all degrees of freedom to track the body velocities along with the end-effector position, and a high-level policy proposing the velocities and end-effector position based on visual inputs. We train both levels of policies in simulation and perform Sim2Real transfer for real robot deployment. We perform extensive experiments and show significant improvements over baselines in picking up diverse objects in different configurations (heights, locations, orientations) and environments.