Goto

Collaborating Authors

 Yang, Qian


AIR-Bench: Benchmarking Large Audio-Language Models via Generative Comprehension

arXiv.org Artificial Intelligence

Recently, instruction-following audio-language models have received broad attention for human-audio interaction. However, the absence of benchmarks capable of evaluating audio-centric interaction capabilities has impeded advancements in this field. Previous models primarily focus on assessing different fundamental tasks, such as Automatic Speech Recognition (ASR), and lack an assessment of the open-ended generative capabilities centered around audio. Thus, it is challenging to track the progression in the Large Audio-Language Models (LALMs) domain and to provide guidance for future improvement. In this paper, we introduce AIR-Bench (\textbf{A}udio \textbf{I}nst\textbf{R}uction \textbf{Bench}mark), the first benchmark designed to evaluate the ability of LALMs to understand various types of audio signals (including human speech, natural sounds, and music), and furthermore, to interact with humans in the textual format. AIR-Bench encompasses two dimensions: \textit{foundation} and \textit{chat} benchmarks. The former consists of 19 tasks with approximately 19k single-choice questions, intending to inspect the basic single-task ability of LALMs. The latter one contains 2k instances of open-ended question-and-answer data, directly assessing the comprehension of the model on complex audio and its capacity to follow instructions. Both benchmarks require the model to generate hypotheses directly. We design a unified framework that leverages advanced language models, such as GPT-4, to evaluate the scores of generated hypotheses given the meta-information of the audio. Experimental results demonstrate a high level of consistency between GPT-4-based evaluation and human evaluation. By revealing the limitations of existing LALMs through evaluation results, AIR-Bench can provide insights into the direction of future research.


Leveraging Generative AI for Clinical Evidence Summarization Needs to Ensure Trustworthiness

arXiv.org Artificial Intelligence

Evidence-based medicine promises to improve the quality of healthcare by empowering medical decisions and practices with the best available evidence. The rapid growth of medical evidence, which can be obtained from various sources, poses a challenge in collecting, appraising, and synthesizing the evidential information. Recent advancements in generative AI, exemplified by large language models, hold promise in facilitating the arduous task. However, developing accountable, fair, and inclusive models remains a complicated undertaking. In this perspective, we discuss the trustworthiness of generative AI in the context of automated summarization of medical evidence.


Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models

arXiv.org Artificial Intelligence

Recently, instruction-following audio-language models have received broad attention for audio interaction with humans. However, the absence of pre-trained audio models capable of handling diverse audio types and tasks has hindered progress in this field. Consequently, most existing works have only been able to support a limited range of interaction capabilities. In this paper, we develop the Qwen-Audio model and address this limitation by scaling up audio-language pre-training to cover over 30 tasks and various audio types, such as human speech, natural sounds, music, and songs, to facilitate universal audio understanding abilities. However, directly co-training all tasks and datasets can lead to interference issues, as the textual labels associated with different datasets exhibit considerable variations due to differences in task focus, language, granularity of annotation, and text structure. To overcome the one-to-many interference, we carefully design a multi-task training framework by conditioning on a sequence of hierarchical tags to the decoder for encouraging knowledge sharing and avoiding interference through shared and specified tags respectively. Remarkably, Qwen-Audio achieves impressive performance across diverse benchmark tasks without requiring any task-specific fine-tuning, surpassing its counterparts. Building upon the capabilities of Qwen-Audio, we further develop Qwen-Audio-Chat, which allows for input from various audios and text inputs, enabling multi-turn dialogues and supporting various audio-central scenarios.


Regularized Data Programming with Automated Bayesian Prior Selection

arXiv.org Artificial Intelligence

The cost of manual data labeling can be a significant obstacle in supervised learning. Data programming (DP) offers a weakly supervised solution for training dataset creation, wherein the outputs of user-defined programmatic labeling functions (LFs) are reconciled through unsupervised learning. However, DP can fail to outperform an unweighted majority vote in some scenarios, including low-data contexts. This work introduces a Bayesian extension of classical DP that mitigates failures of unsupervised learning by augmenting the DP objective with regularization terms. Regularized learning is achieved through maximum a posteriori estimation with informative priors. Majority vote is proposed as a proxy signal for automated prior parameter selection. Results suggest that regularized DP improves performance relative to maximum likelihood and majority voting, confers greater interpretability, and bolsters performance in low-data regimes.


Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech

arXiv.org Artificial Intelligence

Polyphone disambiguation aims to capture accurate pronunciation knowledge from natural text sequences for reliable Text-to-speech (TTS) systems. However, previous approaches require substantial annotated training data and additional efforts from language experts, making it difficult to extend high-quality neural TTS systems to out-of-domain daily conversations and countless languages worldwide. This paper tackles the polyphone disambiguation problem from a concise and novel perspective: we propose Dict-TTS, a semantic-aware generative text-to-speech model with an online website dictionary (the existing prior information in the natural language). Specifically, we design a semantics-to-pronunciation attention (S2PA) module to match the semantic patterns between the input text sequence and the prior semantics in the dictionary and obtain the corresponding pronunciations; The S2PA module can be easily trained with the end-to-end TTS model without any annotated phoneme labels. Experimental results in three languages show that our model outperforms several strong baseline models in terms of pronunciation accuracy and improves the prosody modeling of TTS systems. Further extensive analyses demonstrate that each design in Dict-TTS is effective.


The Participatory Turn in AI Design: Theoretical Foundations and the Current State of Practice

arXiv.org Artificial Intelligence

Despite the growing consensus that stakeholders affected by AI systems should participate in their design, enormous variation and implicit disagreements exist among current approaches. For researchers and practitioners who are interested in taking a participatory approach to AI design and development, it remains challenging to assess the extent to which any participatory approach grants substantive agency to stakeholders. This article thus aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation and through empirical investigation and critique of its current practices. Specifically, we derive a conceptual framework through synthesis of literature across technology design, political theory, and the social sciences that researchers and practitioners can leverage to evaluate approaches to participation in AI design. Additionally, we articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners. We use these empirical findings to understand the current state of participatory practice and subsequently provide guidance to better align participatory goals and methods in a way that accounts for practical constraints.


Enhancing Multi-modal and Multi-hop Question Answering via Structured Knowledge and Unified Retrieval-Generation

arXiv.org Artificial Intelligence

Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities. Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences, and thus do not adequately connect candidates and are unable to model the interdependent relations during retrieval. Moreover, the pipelined approaches of retrieval and generation might result in poor generation performance when retrieval performance is low. To address these issues, we propose a Structured Knowledge and Unified Retrieval-Generation (SKURG) approach. SKURG employs an Entity-centered Fusion Encoder to align sources from different modalities using shared entities. It then uses a unified Retrieval-Generation Decoder to integrate intermediate retrieval results for answer generation and also adaptively determine the number of retrieval steps. Extensive experiments on two representative multi-modal multi-hop QA datasets MultimodalQA and WebQA demonstrate that SKURG outperforms the state-of-the-art models in both source retrieval and answer generation performance with fewer parameters. Our code is available at https://github.com/HITsz-TMG/SKURG.


Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive Bias

arXiv.org Artificial Intelligence

Scaling text-to-speech to a large and wild dataset has been proven to be highly effective in achieving timbre and speech style generalization, particularly in zero-shot TTS. However, previous works usually encode speech into latent using audio codec and use autoregressive language models or diffusion models to generate it, which ignores the intrinsic nature of speech and may lead to inferior or uncontrollable results. We argue that speech can be decomposed into several attributes (e.g., content, timbre, prosody, and phase) and each of them should be modeled using a module with appropriate inductive biases. From this perspective, we carefully design a novel and large zero-shot TTS system called Mega-TTS, which is trained with large-scale wild data and models different attributes in different ways: 1) Instead of using latent encoded by audio codec as the intermediate feature, we still choose spectrogram as it separates the phase and other attributes very well. Phase can be appropriately constructed by the GAN-based vocoder and does not need to be modeled by the language model. 2) We model the timbre using global vectors since timbre is a global attribute that changes slowly over time. 3) We further use a VQGAN-based acoustic model to generate the spectrogram and a latent code language model to fit the distribution of prosody, since prosody changes quickly over time in a sentence, and language models can capture both local and long-range dependencies. We scale Mega-TTS to multi-domain datasets with 20K hours of speech and evaluate its performance on unseen speakers. Experimental results demonstrate that Mega-TTS surpasses state-of-the-art TTS systems on zero-shot TTS, speech editing, and cross-lingual TTS tasks, with superior naturalness, robustness, and speaker similarity due to the proper inductive bias of each module. Audio samples are available at https://mega-tts.github.io/demo-page.


Med-EASi: Finely Annotated Dataset and Models for Controllable Simplification of Medical Texts

arXiv.org Artificial Intelligence

Automatic medical text simplification can assist providers with patient-friendly communication and make medical texts more accessible, thereby improving health literacy. But curating a quality corpus for this task requires the supervision of medical experts. In this work, we present $\textbf{Med-EASi}$ ($\underline{\textbf{Med}}$ical dataset for $\underline{\textbf{E}}$laborative and $\underline{\textbf{A}}$bstractive $\underline{\textbf{Si}}$mplification), a uniquely crowdsourced and finely annotated dataset for supervised simplification of short medical texts. Its $\textit{expert-layman-AI collaborative}$ annotations facilitate $\textit{controllability}$ over text simplification by marking four kinds of textual transformations: elaboration, replacement, deletion, and insertion. To learn medical text simplification, we fine-tune T5-large with four different styles of input-output combinations, leading to two control-free and two controllable versions of the model. We add two types of $\textit{controllability}$ into text simplification, by using a multi-angle training approach: $\textit{position-aware}$, which uses in-place annotated inputs and outputs, and $\textit{position-agnostic}$, where the model only knows the contents to be edited, but not their positions. Our results show that our fine-grained annotations improve learning compared to the unannotated baseline. Furthermore, $\textit{position-aware}$ control generates better simplification than the $\textit{position-agnostic}$ one. The data and code are available at https://github.com/Chandrayee/CTRL-SIMP.


Chunk-aware Alignment and Lexical Constraint for Visual Entailment with Natural Language Explanations

arXiv.org Artificial Intelligence

Visual Entailment with natural language explanations aims to infer the relationship between a text-image pair and generate a sentence to explain the decision-making process. Previous methods rely mainly on a pre-trained vision-language model to perform the relation inference and a language model to generate the corresponding explanation. However, the pre-trained vision-language models mainly build token-level alignment between text and image yet ignore the high-level semantic alignment between the phrases (chunks) and visual contents, which is critical for vision-language reasoning. Moreover, the explanation generator based only on the encoded joint representation does not explicitly consider the critical decision-making points of relation inference. Thus the generated explanations are less faithful to visual-language reasoning. To mitigate these problems, we propose a unified Chunk-aware Alignment and Lexical Constraint based method, dubbed as CALeC. It contains a Chunk-aware Semantic Interactor (arr. CSI), a relation inferrer, and a Lexical Constraint-aware Generator (arr. LeCG). Specifically, CSI exploits the sentence structure inherent in language and various image regions to build chunk-aware semantic alignment. Relation inferrer uses an attention-based reasoning network to incorporate the token-level and chunk-level vision-language representations. LeCG utilizes lexical constraints to expressly incorporate the words or chunks focused by the relation inferrer into explanation generation, improving the faithfulness and informativeness of the explanations. We conduct extensive experiments on three datasets, and experimental results indicate that CALeC significantly outperforms other competitor models on inference accuracy and quality of generated explanations.