Yang, Ming-Hsuan
Learning to Localize Sound Source in Visual Scenes
Senocak, Arda, Oh, Tae-Hyun, Kim, Junsik, Yang, Ming-Hsuan, Kweon, In So
Visual events are usually accompanied by sounds in our daily lives. We pose the question: Can the machine learn the correspondence between visual scene and the sound, and localize the sound source only by observing sound and visual scene pairs like human? In this paper, we propose a novel unsupervised algorithm to address the problem of localizing the sound source in visual scenes. A two-stream network structure which handles each modality, with attention mechanism is developed for sound source localization. Moreover, although our network is formulated within the unsupervised learning framework, it can be extended to a unified architecture with a simple modification for the supervised and semi-supervised learning settings as well. Meanwhile, a new sound source dataset is developed for performance evaluation. Our empirical evaluation shows that the unsupervised method eventually go through false conclusion in some cases. We show that even with a few supervision, false conclusion is able to be corrected and the source of sound in a visual scene can be localized effectively.
Learning Binary Residual Representations for Domain-Specific Video Streaming
Tsai, Yi-Hsuan (University of California, Merced) | Liu, Ming-Yu (NVIDIA) | Sun, Deqing (NVIDIA) | Yang, Ming-Hsuan (UC Merced) | Kautz, Jan (NVIDIA)
We study domain-specific video streaming. Specifically, we target a streaming setting where the videos to be streamed from a server to a client are all in the same domain and they have to be compressed to a small size for low-latency transmission. Several popular video streaming services, such as the video game streaming services of GeForce Now and Twitch, fall in this category. While conventional video compression standards such as H.264 are commonly used for this task, we hypothesize that one can leverage the property that the videos are all in the same domain to achieve better video quality. Based on this hypothesis, we propose a novel video compression pipeline. Specifically, we first apply H.264 to compress domain-specific videos. We then train a novel binary autoencoder to encode the leftover domain-specific residual information frame-by-frame into binary representations. These binary representations are then compressed and sent to the client together with the H.264 stream. In our experiments, we show that our pipeline yields consistent gains over standard H.264 compression across several benchmark datasets while using the same channel bandwidth.
Retrieving and Classifying Affective Images via Deep Metric Learning
Yang, Jufeng (Nankai University) | She, Dongyu (Nankai University) | Lai, Yu-Kun (Cardiff University) | Yang, Ming-Hsuan (University of California at Merced)
Affective image understanding has been extensively studied in the last decade since more and more users express emotion via visual contents. While current algorithms based on convolutional neural networks aim to distinguish emotional categories in a discrete label space, the task is inherently ambiguous. This is mainly because emotional labels with the same polarity (i.e., positive or negative) are highly related, which is different from concrete object concepts such as cat, dog and bird. To the best of our knowledge, few methods focus on leveraging such characteristic of emotions for affective image understanding. In this work, we address the problem of understanding affective images via deep metric learning and propose a multi-task deep framework to optimize both retrieval and classification goals. We propose the sentiment constraints adapted from the triplet constraints, which are able to explore the hierarchical relation of emotion labels. We further exploit the sentiment vector as an effective representation to distinguish affective images utilizing the texture representation derived from convolutional layers. Extensive evaluations on four widely-used affective datasets, i.e., Flickr and Instagram, IAPSa, Art Photo, and Abstract Paintings, demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods on both affective image retrieval and classification tasks.
Learning Affinity via Spatial Propagation Networks
Liu, Sifei, Mello, Shalini De, Gu, Jinwei, Zhong, Guangyu, Yang, Ming-Hsuan, Kautz, Jan
In this paper, we propose a spatial propagation networks for learning affinity matrix. We show that by constructing a row/column linear propagation model, the spatially variant transformation matrix constitutes an affinity matrix that models dense, global pairwise similarities of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that is effective to model any task-specific pairwise similarity. Instead of designing the similarity kernels according to image features of two points, we can directly output all similarities in a pure data-driven manner. The spatial propagation network is a generic framework that can be applied to numerous tasks, which traditionally benefit from designed affinity, e.g., image matting, colorization, and guided filtering, to name a few. Furthermore, the model can also learn semantic-aware affinity for high-level vision tasks due to the learning capability of the deep model. We validate the proposed framework by refinement of object segmentation. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides general, effective and efficient solutions for generating high-quality segmentation results.
Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
Lai, Wei-Sheng, Huang, Jia-Bin, Yang, Ming-Hsuan
Convolutional neural networks (CNNs) have recently been applied to the optical flow estimation problem. As training the CNNs requires sufficiently large ground truth training data, existing approaches resort to synthetic, unrealistic datasets. On the other hand, unsupervised methods are capable of leveraging real-world videos for training where the ground truth flow fields are not available. These methods, however, rely on the fundamental assumptions of brightness constancy and spatial smoothness priors which do not hold near motion boundaries. In this paper, we propose to exploit unlabeled videos for semi-supervised learning of optical flow with a Generative Adversarial Network. Our key insight is that the adversarial loss can capture the structural patterns of flow warp errors without making explicit assumptions. Extensive experiments on benchmark datasets demonstrate that the proposed semi-supervised algorithm performs favorably against purely supervised and semi-supervised learning schemes.
Universal Style Transfer via Feature Transforms
Li, Yijun, Fang, Chen, Yang, Jimei, Wang, Zhaowen, Lu, Xin, Yang, Ming-Hsuan
Universal style transfer aims to transfer arbitrary visual styles to content images. Existing feed-forward based methods, while enjoying the inference efficiency, are mainly limited by inability of generalizing to unseen styles or compromised visual quality. In this paper, we present a simple yet effective method that tackles these limitations without training on any pre-defined styles. The key ingredient of our method is a pair of feature transforms, whitening and coloring, that are embedded to an image reconstruction network. The whitening and coloring transforms reflect direct matching of feature covariance of the content image to a given style image, which shares similar spirits with the optimization of Gram matrix based cost in neural style transfer. We demonstrate the effectiveness of our algorithm by generating high-quality stylized images with comparisons to a number of recent methods. We also analyze our method by visualizing the whitened features and synthesizing textures by simple feature coloring.
Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis
Yang, Jimei, Reed, Scott E., Yang, Ming-Hsuan, Lee, Honglak
An important problem for both graphics and vision is to synthesize novel views of a 3D object from a single image. This is in particular challenging due to the partial observability inherent in projecting a 3D object onto the image space, and the ill-posedness of inferring object shape and pose. However, we can train a neural network to address the problem if we restrict our attention to specific object classes (in our case faces and chairs) for which we can gather ample training data. In this paper, we propose a novel recurrent convolutional encoder-decoder network that is trained end-to-end on the task of rendering rotated objects starting from a single image. The recurrent structure allows our model to capture long- term dependencies along a sequence of transformations, and we demonstrate the quality of its predictions for human faces on the Multi-PIE dataset and for a dataset of 3D chair models, and also show its ability of disentangling latent data factors without using object class labels.
Detecting Humans via Their Pose
Bissacco, Alessandro, Yang, Ming-Hsuan, Soatto, Stefano
Adaptive Discriminative Generative Model and Its Applications
Lin, Ruei-sung, Ross, David A., Lim, Jongwoo, Yang, Ming-Hsuan
This paper presents an adaptive discriminative generative model that generalizes theconventional Fisher Linear Discriminant algorithm and renders a proper probabilistic interpretation. Within the context of object tracking, we aim to find a discriminative generative model that best separates thetarget from the background. We present a computationally efficient algorithm to constantly update this discriminative model as time progresses. While most tracking algorithms operate on the premise that the object appearance or ambient lighting condition does not significantly change as time progresses, our method adapts a discriminative generative modelto reflect appearance variation of the target and background, thereby facilitating the tracking task in ever-changing environments. Numerous experimentsshow that our method is able to learn a discriminative generative model for tracking target objects undergoing large pose and lighting changes.
Incremental Learning for Visual Tracking
Lim, Jongwoo, Ross, David A., Lin, Ruei-sung, Yang, Ming-Hsuan
Most existing tracking algorithms construct a representation of a target object prior to the tracking task starts, and utilize invariant features to handle appearance variation of the target caused by lighting, pose, and view angle change. In this paper, we present an efficient and effective onlinealgorithm that incrementally learns and adapts a low dimensional eigenspacerepresentation to reflect appearance changes of the target, thereby facilitating the tracking task. Furthermore, our incremental method correctly updates the sample mean and the eigenbasis, whereas existing incremental subspace update methods ignore the fact the sample mean varies over time. The tracking problem is formulated as a state inference problem within a Markov Chain Monte Carlo framework and a particle filter is incorporated for propagating sample distributions over time. Numerous experiments demonstrate the effectiveness of the proposed trackingalgorithm in indoor and outdoor environments where the target objects undergo large pose and lighting changes.