Yang, Ming-Hsuan
LLM Post-Training: A Deep Dive into Reasoning Large Language Models
Kumar, Komal, Ashraf, Tajamul, Thawakar, Omkar, Anwer, Rao Muhammad, Cholakkal, Hisham, Shah, Mubarak, Yang, Ming-Hsuan, Torr, Phillip H. S., Khan, Salman, Khan, Fahad Shahbaz
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications. Pretraining on vast web-scale data has laid the foundation for these models, yet the research community is now increasingly shifting focus toward post-training techniques to achieve further breakthroughs. While pretraining provides a broad linguistic foundation, post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations. Fine-tuning, reinforcement learning, and test-time scaling have emerged as critical strategies for optimizing LLMs performance, ensuring robustness, and improving adaptability across various real-world tasks. This survey provides a systematic exploration of post-training methodologies, analyzing their role in refining LLMs beyond pretraining, addressing key challenges such as catastrophic forgetting, reward hacking, and inference-time trade-offs. We highlight emerging directions in model alignment, scalable adaptation, and inference-time reasoning, and outline future research directions. We also provide a public repository to continually track developments in this fast-evolving field: https://github.com/mbzuai-oryx/Awesome-LLM-Post-training.
Optimizing Singular Spectrum for Large Language Model Compression
Li, Dengjie, Shen, Tiancheng, Zhou, Yao, Yang, Baisong, Liu, Zhongying, Yang, Masheng, Ghanem, Bernard, Yang, Yibo, Zhong, Yujie, Yang, Ming-Hsuan
Large language models (LLMs) have demonstrated remarkable capabilities, yet prohibitive parameter complexity often hinders their deployment. Existing singular value decomposition (SVD) based compression methods simply deem singular values as importance scores of decomposed components. However, this importance ordered by singular values does not necessarily correlate with the performance of a downstream task. In this work, we introduce SoCo (Singular spectrum optimization for large language model Compression), a novel compression framework that learns to rescale the decomposed components of SVD in a data-driven manner. Concretely, we employ a learnable diagonal matrix to assign importance scores for singular spectrum and develop a three-stage training process that progressively refines these scores from initial coarse compression to fine-grained sparsification-thereby striking an effective balance between aggressive model compression and performance preservation. Thanks to the learnable singular spectrum, SoCo adaptively prunes components according to the sparsified importance scores, rather than relying on the fixed order of singular values. More importantly, the remaining components with amplified importance scores can compensate for the loss of the pruned ones. Experimental evaluations across multiple LLMs and benchmarks demonstrate that SoCo surpasses the state-of-the-art methods in model compression.
UMC: Unified Resilient Controller for Legged Robots with Joint Malfunctions
Qiu, Yu, Lin, Xin, Wang, Jingbo, Li, Xiangtai, Qi, Lu, Yang, Ming-Hsuan
Adaptation to unpredictable damages is crucial for autonomous legged robots, yet existing methods based on multi-policy or meta-learning frameworks face challenges like limited generalization and complex maintenance. To address this issue, we first analyze and summarize eight types of damage scenarios, including sensor failures and joint malfunctions. Then, we propose a novel, model-free, two-stage training framework, Unified Malfunction Controller (UMC), incorporating a masking mechanism to enhance damage resilience. Specifically, the model is initially trained with normal environments to ensure robust performance under standard conditions. In the second stage, we use masks to prevent the legged robot from relying on malfunctioning limbs, enabling adaptive gait and movement adjustments upon malfunction. Experimental results demonstrate that our approach improves the task completion capability by an average of 36% for the transformer and 39% for the MLP across three locomotion tasks. The source code and trained models will be made available to the public.
Lost in Edits? A $\lambda$-Compass for AIGC Provenance
You, Wenhao, Hooi, Bryan, Wang, Yiwei, Choo, Euijin, Yang, Ming-Hsuan, Yuan, Junsong, Huang, Zi, Cai, Yujun
Recent advancements in diffusion models have driven the growth of text-guided image editing tools, enabling precise and iterative modifications of synthesized content. However, as these tools become increasingly accessible, they also introduce significant risks of misuse, emphasizing the critical need for robust attribution methods to ensure content authenticity and traceability. Despite the creative potential of such tools, they pose significant challenges for attribution, particularly in adversarial settings where edits can be layered to obscure an image's origins. We propose LambdaTracer, a novel latent-space attribution method that robustly identifies and differentiates authentic outputs from manipulated ones without requiring any modifications to generative or editing pipelines. By adaptively calibrating reconstruction losses, LambdaTracer remains effective across diverse iterative editing processes, whether automated through text-guided editing tools such as InstructPix2Pix and ControlNet or performed manually with editing software such as Adobe Photoshop. Extensive experiments reveal that our method consistently outperforms baseline approaches in distinguishing maliciously edited images, providing a practical solution to safeguard ownership, creativity, and credibility in the open, fast-evolving AI ecosystems.
UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior
Chen, I-Hsiang, Chen, Wei-Ting, Liu, Yu-Wei, Chiang, Yuan-Chun, Kuo, Sy-Yen, Yang, Ming-Hsuan
Image restoration aims to recover content from inputs degraded by various factors, such as adverse weather, blur, and noise. Perceptual Image Restoration (PIR) methods improve visual quality but often do not support downstream tasks effectively. On the other hand, Task-oriented Image Restoration (TIR) methods focus on enhancing image utility for high-level vision tasks, sometimes compromising visual quality. This paper introduces UniRestore, a unified image restoration model that bridges the gap between PIR and TIR by using a diffusion prior. The diffusion prior is designed to generate images that align with human visual quality preferences, but these images are often unsuitable for TIR scenarios. To solve this limitation, UniRestore utilizes encoder features from an autoencoder to adapt the diffusion prior to specific tasks. We propose a Complementary Feature Restoration Module (CFRM) to reconstruct degraded encoder features and a Task Feature Adapter (TFA) module to facilitate adaptive feature fusion in the decoder. This design allows UniRestore to optimize images for both human perception and downstream task requirements, addressing discrepancies between visual quality and functional needs. Integrating these modules also enhances UniRestore's adapability and efficiency across diverse tasks. Extensive expertments demonstrate the superior performance of UniRestore in both PIR and TIR scenarios.
Nested Annealed Training Scheme for Generative Adversarial Networks
Wan, Chang, Yang, Ming-Hsuan, Li, Minglu, Jiang, Yunliang, Zheng, Zhonglong
Recently, researchers have proposed many deep generative models, including generative adversarial networks(GANs) and denoising diffusion models. Although significant breakthroughs have been made and empirical success has been achieved with the GAN, its mathematical underpinnings remain relatively unknown. This paper focuses on a rigorous mathematical theoretical framework: the composite-functional-gradient GAN (CFG)[1]. Specifically, we reveal the theoretical connection between the CFG model and score-based models. We find that the training objective of the CFG discriminator is equivalent to finding an optimal D(x). The optimal gradient of D(x) differentiates the integral of the differences between the score functions of real and synthesized samples. Conversely, training the CFG generator involves finding an optimal G(x) that minimizes this difference. In this paper, we aim to derive an annealed weight preceding the weight of the CFG discriminator. This new explicit theoretical explanation model is called the annealed CFG method. To overcome the limitation of the annealed CFG method, as the method is not readily applicable to the SOTA GAN model, we propose a nested annealed training scheme (NATS). This scheme keeps the annealed weight from the CFG method and can be seamlessly adapted to various GAN models, no matter their structural, loss, or regularization differences. We conduct thorough experimental evaluations on various benchmark datasets for image generation. The results show that our annealed CFG and NATS methods significantly improve the quality and diversity of the synthesized samples. This improvement is clear when comparing the CFG method and the SOTA GAN models.
VinT-6D: A Large-Scale Object-in-hand Dataset from Vision, Touch and Proprioception
Wan, Zhaoliang, Ling, Yonggen, Yi, Senlin, Qi, Lu, Lee, Wangwei, Lu, Minglei, Yang, Sicheng, Teng, Xiao, Lu, Peng, Yang, Xu, Yang, Ming-Hsuan, Cheng, Hui
This paper addresses the scarcity of large-scale datasets for accurate object-in-hand pose estimation, which is crucial for robotic in-hand manipulation within the ``Perception-Planning-Control" paradigm. Specifically, we introduce VinT-6D, the first extensive multi-modal dataset integrating vision, touch, and proprioception, to enhance robotic manipulation. VinT-6D comprises 2 million VinT-Sim and 0.1 million VinT-Real splits, collected via simulations in MuJoCo and Blender and a custom-designed real-world platform. This dataset is tailored for robotic hands, offering models with whole-hand tactile perception and high-quality, well-aligned data. To the best of our knowledge, the VinT-Real is the largest considering the collection difficulties in the real-world environment so that it can bridge the gap of simulation to real compared to the previous works. Built upon VinT-6D, we present a benchmark method that shows significant improvements in performance by fusing multi-modal information. The project is available at https://VinT-6D.github.io/.
Adapter-Enhanced Semantic Prompting for Continual Learning
Yin, Baocai, Zhao, Ji, Jiang, Huajie, Hou, Ningning, Hu, Yongli, Beheshti, Amin, Yang, Ming-Hsuan, Qi, Yuankai
Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
OmnixR: Evaluating Omni-modality Language Models on Reasoning across Modalities
Chen, Lichang, Hu, Hexiang, Zhang, Mingda, Chen, Yiwen, Wang, Zifeng, Li, Yandong, Shyam, Pranav, Zhou, Tianyi, Huang, Heng, Yang, Ming-Hsuan, Gong, Boqing
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish holistic understanding and reasoning across modalities to accomplish the task. Existing benchmarks are limited to single modality or dual-modality tasks, overlooking comprehensive multi-modal assessments of model reasoning. To address this, OmnixR offers two evaluation variants: (1)synthetic subset: a synthetic dataset generated automatically by translating text into multiple modalities--audio, images, video, and hybrids (Omnify). (2)realistic subset: a real-world dataset, manually curated and annotated by experts, for evaluating cross-modal reasoning in natural settings. OmnixR presents a unique evaluation towards assessing OLMs over a diverse mix of modalities, such as a question that involves video, audio, and text, providing a rigorous cross-modal reasoning testbed unlike any existing benchmarks. Our experiments find that all state-of-the-art OLMs struggle with OmnixR questions that require integrating information from multiple modalities to answer. Further analysis highlights differences in reasoning behavior, underscoring the challenges of omni-modal AI alignment.
Learning Spatial-Semantic Features for Robust Video Object Segmentation
Li, Xin, Miao, Deshui, He, Zhenyu, Wang, Yaowei, Lu, Huchuan, Yang, Ming-Hsuan
Tracking and segmenting multiple similar objects with complex or separate parts in long-term videos is inherently challenging due to the ambiguity of target parts and identity confusion caused by occlusion, background clutter, and long-term variations. In this paper, we propose a robust video object segmentation framework equipped with spatial-semantic features and discriminative object queries to address the above issues. Specifically, we construct a spatial-semantic network comprising a semantic embedding block and spatial dependencies modeling block to associate the pretrained ViT features with global semantic features and local spatial features, providing a comprehensive target representation. In addition, we develop a masked cross-attention module to generate object queries that focus on the most discriminative parts of target objects during query propagation, alleviating noise accumulation and ensuring effective long-term query propagation. The experimental results show that the proposed method set a new state-of-the-art performance on multiple datasets, including the DAVIS2017 test (89.1%), YoutubeVOS 2019 (88.5%), MOSE (75.1%), LVOS test (73.0%), and LVOS val (75.1%), which demonstrate the effectiveness and generalization capacity of the proposed method. We will make all source code and trained models publicly available.