Goto

Collaborating Authors

 Yang, Kaitong


TaCIE: Enhancing Instruction Comprehension in Large Language Models through Task-Centred Instruction Evolution

arXiv.org Artificial Intelligence

Large Language Models (LLMs) require precise alignment with complex instructions to optimize their performance in real-world applications. As the demand for refined instruction tuning data increases, traditional methods that evolve simple seed instructions often struggle to effectively enhance complexity or manage difficulty scaling across various domains. Our innovative approach, Task-Centered Instruction Evolution (TaCIE), addresses these shortcomings by redefining instruction evolution from merely evolving seed instructions to a more dynamic and comprehensive combination of elements. TaCIE starts by deconstructing complex instructions into their fundamental components. It then generates and integrates new elements with the original ones, reassembling them into more sophisticated instructions that progressively increase in difficulty, diversity, and complexity. Applied across multiple domains, LLMs fine-tuned with these evolved instructions have substantially outperformed those tuned with conventional methods, marking a significant advancement in instruction-based model fine-tuning.


Optimizing and Testing Instruction-Following: Analyzing the Impact of Fine-Grained Instruction Variants on instruction-tuned LLMs

arXiv.org Artificial Intelligence

The effective alignment of Large Language Models (LLMs) with precise instructions is essential for their application in diverse real-world scenarios. Current methods focus on enhancing the diversity and complexity of training and evaluation samples, yet they fall short in accurately assessing LLMs' ability to follow similar instruction variants. We introduce an effective data augmentation technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants, thereby preserves the original instruction's context and complexity while introducing variability, which is critical for training and evaluating LLMs' instruction-following precision. We developed the DeMoRecon dataset using this method to both fine-tune and evaluate LLMs. Our findings show that LLMs fine-tuned with DeMoRecon will gain significant performance boost on both ours and commonly used instructions-following benchmarks.


HRLAIF: Improvements in Helpfulness and Harmlessness in Open-domain Reinforcement Learning From AI Feedback

arXiv.org Artificial Intelligence

Reinforcement Learning from AI Feedback (RLAIF) has the advantages of shorter annotation cycles and lower costs over Reinforcement Learning from Human Feedback (RLHF), making it highly efficient during the rapid strategy iteration periods of large language model (LLM) training. Using ChatGPT as a labeler to provide feedback on open-domain prompts in RLAIF training, we observe an increase in human evaluators' preference win ratio for model responses, but a decrease in evaluators' satisfaction rate. Analysis suggests that the decrease in satisfaction rate is mainly due to some responses becoming less helpful, particularly in terms of correctness and truthfulness, highlighting practical limitations of basic RLAIF. In this paper, we propose Hybrid Reinforcement Learning from AI Feedback (HRLAIF). This method enhances the accuracy of AI annotations for responses, making the model's helpfulness more robust in training process. Additionally, it employs AI for Red Teaming, further improving the model's harmlessness. Human evaluation results show that HRLAIF inherits the ability of RLAIF to enhance human preference for outcomes at a low cost while also improving the satisfaction rate of responses. Compared to the policy model before Reinforcement Learning (RL), it achieves an increase of 2.08\% in satisfaction rate, effectively addressing the issue of a decrease of 4.58\% in satisfaction rate after basic RLAIF.


Instruction Fusion: Advancing Prompt Evolution through Hybridization

arXiv.org Artificial Intelligence

The fine-tuning of Large Language Models (LLMs) specialized in code generation has seen notable advancements through the use of open-domain coding queries. Despite the successes, existing methodologies like Evol-Instruct encounter performance limitations, impeding further enhancements in code generation tasks. This paper examines the constraints of existing prompt evolution techniques and introduces a novel approach, Instruction Fusion (IF). IF innovatively combines two distinct prompts through a hybridization process, thereby enhancing the evolution of training prompts for code LLMs. Our experimental results reveal that the proposed novel method effectively addresses the shortcomings of prior methods, significantly improving the performance of Code LLMs across five code generation benchmarks, namely HumanEval, HumanEval+, MBPP, MBPP+ and MultiPL-E, which underscore the effectiveness of Instruction Fusion in advancing the capabilities of LLMs in code generation.