Goto

Collaborating Authors

 Yang, Kailun


EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera

arXiv.org Artificial Intelligence

-- Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that includes events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. T o address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-T emporal Shift Module (BSTM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further establish the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy tested on unseen subjects with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high interpersonal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 97.0% on the DVS128 Gesture, demonstrating the effectiveness and generalization capability of our method on public datasets.


HierDAMap: Towards Universal Domain Adaptive BEV Mapping via Hierarchical Perspective Priors

arXiv.org Artificial Intelligence

The exploration of Bird's-Eye View (BEV) mapping technology has driven significant innovation in visual perception technology for autonomous driving. BEV mapping models need to be applied to the unlabeled real world, making the study of unsupervised domain adaptation models an essential path. However, research on unsupervised domain adaptation for BEV mapping remains limited and cannot perfectly accommodate all BEV mapping tasks. To address this gap, this paper proposes HierDAMap, a universal and holistic BEV domain adaptation framework with hierarchical perspective priors. Unlike existing research that solely focuses on image-level learning using prior knowledge, this paper explores the guiding role of perspective prior knowledge across three distinct levels: global, sparse, and instance levels. With these priors, HierDA consists of three essential components, including Semantic-Guided Pseudo Supervision (SGPS), Dynamic-Aware Coherence Learning (DACL), and Cross-Domain Frustum Mixing (CDFM). SGPS constrains the cross-domain consistency of perspective feature distribution through pseudo labels generated by vision foundation models in 2D space. To mitigate feature distribution discrepancies caused by spatial variations, DACL employs uncertainty-aware predicted depth as an intermediary to derive dynamic BEV labels from perspective pseudo-labels, thereby constraining the coarse BEV features derived from corresponding perspective features. CDFM, on the other hand, leverages perspective masks of view frustum to mix multi-view perspective images from both domains, which guides cross-domain view transformation and encoding learning through mixed BEV labels. The proposed method is verified on multiple BEV mapping tasks, such as BEV semantic segmentation, high-definition semantic, and vectorized mapping. The source code will be made publicly available at https://github.com/lynn-yu/HierDAMap.


Omnidirectional Multi-Object Tracking

arXiv.org Artificial Intelligence

Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.


Unifying Light Field Perception with Field of Parallax

arXiv.org Artificial Intelligence

Field of Parallax (FoP)}, a spatial field that distills the common features from different LF representations to provide flexible and consistent support for multi-task learning. FoP is built upon three core features--projection difference, adjacency divergence, and contextual consistency--which are essential for cross-task adaptability. To implement FoP, we design a two-step angular adapter: the first step captures angular-specific differences, while the second step consolidates contextual consistency to ensure robust representation. Leveraging the FoP-based representation, we introduce the LFX framework, the first to handle arbitrary LF representations seamlessly, unifying LF multi-task vision. We evaluated LFX across three different tasks, achieving new state-of-the-art results, compared with previous task-specific architectures: 84.74% in mIoU for semantic segmentation on UrbanLF, 0.84% in AP for object detection on PKU, and 0.030 in MAE and 0.026 in MAE for salient object detection on Duftv2 and PKU, respectively. The source code will be made publicly available at https://github.com/warriordby/LFX.


Detecting Heel Strike and toe off Events Using Kinematic Methods and LSTM Models

arXiv.org Artificial Intelligence

-- Accurate gait event detection is crucial for gait analysis, rehabilitation, and assistive technology, particularly in exoskeleton control, where precise identification of stance and swing phases is essential. This study evaluated the performance of seven kinematics-based methods and a Long Short-T erm Memory (LSTM) model for detecting heel strike and toe-off events across 4363 gait cycles from 588 able-bodied subjects. The results indicated that while the Zeni et al. method achieved the highest accuracy among kinematics-based approaches, other methods exhibited systematic biases or required dataset-specific tuning. The LSTM model performed comparably to Zeni et al., providing a data-driven alternative without systematic bias. Future research will explore the generalizability of these methods in pathological populations, such as individuals with post-stroke conditions and knee osteoarthritis, as well as their robustness across varied gait conditions and data collection settings to enhance their applicability in rehabilitation and exoskeleton control.


One-Shot Affordance Grounding of Deformable Objects in Egocentric Organizing Scenes

arXiv.org Artificial Intelligence

Deformable object manipulation in robotics presents significant challenges due to uncertainties in component properties, diverse configurations, visual interference, and ambiguous prompts. These factors complicate both perception and control tasks. To address these challenges, we propose a novel method for One-Shot Affordance Grounding of Deformable Objects (OS-AGDO) in egocentric organizing scenes, enabling robots to recognize previously unseen deformable objects with varying colors and shapes using minimal samples. Specifically, we first introduce the Deformable Object Semantic Enhancement Module (DefoSEM), which enhances hierarchical understanding of the internal structure and improves the ability to accurately identify local features, even under conditions of weak component information. Next, we propose the ORB-Enhanced Keypoint Fusion Module (OEKFM), which optimizes feature extraction of key components by leveraging geometric constraints and improves adaptability to diversity and visual interference. Additionally, we propose an instance-conditional prompt based on image data and task context, effectively mitigates the issue of region ambiguity caused by prompt words. To validate these methods, we construct a diverse real-world dataset, AGDDO15, which includes 15 common types of deformable objects and their associated organizational actions. Experimental results demonstrate that our approach significantly outperforms state-of-the-art methods, achieving improvements of 6.2%, 3.2%, and 2.9% in KLD, SIM, and NSS metrics, respectively, while exhibiting high generalization performance. Source code and benchmark dataset will be publicly available at https://github.com/Dikay1/OS-AGDO.


Multi-Keypoint Affordance Representation for Functional Dexterous Grasping

arXiv.org Artificial Intelligence

Functional dexterous grasping requires precise hand-object interaction, going beyond simple gripping. Existing affordance-based methods primarily predict coarse interaction regions and cannot directly constrain the grasping posture, leading to a disconnection between visual perception and manipulation. To address this issue, we propose a multi-keypoint affordance representation for functional dexterous grasping, which directly encodes task-driven grasp configurations by localizing functional contact points. Our method introduces Contact-guided Multi-Keypoint Affordance (CMKA), leveraging human grasping experience images for weak supervision combined with Large Vision Models for fine affordance feature extraction, achieving generalization while avoiding manual keypoint annotations. Additionally, we present a Keypoint-based Grasp matrix Transformation (KGT) method, ensuring spatial consistency between hand keypoints and object contact points, thus providing a direct link between visual perception and dexterous grasping actions. Experiments on public real-world FAH datasets, IsaacGym simulation, and challenging robotic tasks demonstrate that our method significantly improves affordance localization accuracy, grasp consistency, and generalization to unseen tools and tasks, bridging the gap between visual affordance learning and dexterous robotic manipulation. The source code and demo videos will be publicly available at https://github.com/PopeyePxx/MKA.


DeProPose: Deficiency-Proof 3D Human Pose Estimation via Adaptive Multi-View Fusion

arXiv.org Artificial Intelligence

3D human pose estimation has wide applications in fields such as intelligent surveillance, motion capture, and virtual reality. However, in real-world scenarios, issues such as occlusion, noise interference, and missing viewpoints can severely affect pose estimation. To address these challenges, we introduce the task of Deficiency-Aware 3D Pose Estimation. Traditional 3D pose estimation methods often rely on multi-stage networks and modular combinations, which can lead to cumulative errors and increased training complexity, making them unable to effectively address deficiency-aware estimation. To this end, we propose DeProPose, a flexible method that simplifies the network architecture to reduce training complexity and avoid information loss in multi-stage designs. Additionally, the model innovatively introduces a multi-view feature fusion mechanism based on relative projection error, which effectively utilizes information from multiple viewpoints and dynamically assigns weights, enabling efficient integration and enhanced robustness to overcome deficiency-aware 3D Pose Estimation challenges. Furthermore, to thoroughly evaluate this end-to-end multi-view 3D human pose estimation model and to advance research on occlusion-related challenges, we have developed a novel 3D human pose estimation dataset, termed the Deficiency-Aware 3D Pose Estimation (DA-3DPE) dataset. This dataset encompasses a wide range of deficiency scenarios, including noise interference, missing viewpoints, and occlusion challenges. Compared to state-of-the-art methods, DeProPose not only excels in addressing the deficiency-aware problem but also shows improvement in conventional scenarios, providing a powerful and user-friendly solution for 3D human pose estimation. The source code will be available at https://github.com/WUJINHUAN/DeProPose.


CT-UIO: Continuous-Time UWB-Inertial-Odometer Localization Using Non-Uniform B-spline with Fewer Anchors

arXiv.org Artificial Intelligence

Ultra-wideband (UWB) based positioning with fewer anchors has attracted significant research interest in recent years, especially under energy-constrained conditions. However, most existing methods rely on discrete-time representations and smoothness priors to infer a robot's motion states, which often struggle with ensuring multi-sensor data synchronization. In this paper, we present an efficient UWB-Inertial-odometer localization system, utilizing a non-uniform B-spline framework with fewer anchors. Unlike traditional uniform B-spline-based continuous-time methods, we introduce an adaptive knot-span adjustment strategy for non-uniform continuous-time trajectory representation. This is accomplished by adjusting control points dynamically based on movement speed. To enable efficient fusion of IMU and odometer data, we propose an improved Extended Kalman Filter (EKF) with innovation-based adaptive estimation to provide short-term accurate motion prior. Furthermore, to address the challenge of achieving a fully observable UWB localization system under few-anchor conditions, the Virtual Anchor (VA) generation method based on multiple hypotheses is proposed. At the backend, we propose a CT-UIO factor graph with an adaptive sliding window for global trajectory estimation. Comprehensive experiments conducted on corridor and exhibition hall datasets validate the proposed system's high precision and robust performance. The codebase and datasets of this work will be open-sourced at https://github.com/JasonSun623/CT-UIO.


Event-aided Semantic Scene Completion

arXiv.org Artificial Intelligence

Autonomous driving systems rely on robust 3D scene understanding. Recent advances in Semantic Scene Completion (SSC) for autonomous driving underscore the limitations of RGB-based approaches, which struggle under motion blur, poor lighting, and adverse weather. Event cameras, offering high dynamic range and low latency, address these challenges by providing asynchronous data that complements RGB inputs. We present DSEC-SSC, the first real-world benchmark specifically designed for event-aided SSC, which includes a novel 4D labeling pipeline for generating dense, visibility-aware labels that adapt dynamically to object motion. Our proposed RGB-Event fusion framework, EvSSC, introduces an Event-aided Lifting Module (ELM) that effectively bridges 2D RGB-Event features to 3D space, enhancing view transformation and the robustness of 3D volume construction across SSC models. Extensive experiments on DSEC-SSC and simulated SemanticKITTI-E demonstrate that EvSSC is adaptable to both transformer-based and LSS-based SSC architectures. Notably, evaluations on SemanticKITTI-C demonstrate that EvSSC achieves consistently improved prediction accuracy across five degradation modes and both In-domain and Out-of-domain settings, achieving up to a 52.5% relative improvement in mIoU when the image sensor partially fails. Additionally, we quantitatively and qualitatively validate the superiority of EvSSC under motion blur and extreme weather conditions, where autonomous driving is challenged. The established datasets and our codebase will be made publicly at https://github.com/Pandapan01/EvSSC.