Goto

Collaborating Authors

 Yang, Jie


Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models

arXiv.org Artificial Intelligence

With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.


Multi-Class Imbalanced Learning with Support Vector Machines via Differential Evolution

arXiv.org Artificial Intelligence

Support vector machine (SVM) is a powerful machine learning algorithm to handle classification tasks. However, the classical SVM is developed for binary problems with the assumption of balanced datasets. Obviously, the multi-class imbalanced classification problems are more complex. In this paper, we propose an improved SVM via Differential Evolution (i-SVM-DE) method to deal with it. An improved SVM (i-SVM) model is proposed to handle the data imbalance by combining cost sensitive technique and separation margin modification in the constraints, which formalize a parameter optimization problem. By using one-versus-one (OVO) scheme, a multi-class problem is decomposed into a number of binary subproblems. A large optimization problem is formalized through concatenating the parameters in the binary subproblems. To find the optimal model effectively and learn the support vectors for each class simultaneously, an improved differential evolution (DE) algorithm is applied to solve this large optimization problem. Instead of the validation set, we propose the fitness functions to evaluate the learned model and obtain the optimal parameters in the search process of DE. A series of experiments are carried out to verify the benefits of our proposed method. The results indicate that i-SVM-DE is statistically superior by comparing with the other baseline methods.


Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction

arXiv.org Artificial Intelligence

Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.


Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model

arXiv.org Artificial Intelligence

We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.


BFS-Prover: Scalable Best-First Tree Search for LLM-based Automatic Theorem Proving

arXiv.org Artificial Intelligence

Recent advancements in large language models (LLMs) have spurred growing interest in automatic theorem proving using Lean4, where effective tree search methods are crucial for navigating proof search spaces. While the existing approaches primarily rely on value functions and Monte Carlo Tree Search (MCTS), the potential of simpler methods like Best-First Search (BFS) remains underexplored. This paper investigates whether BFS can achieve competitive performance in large-scale theorem proving tasks. We present \texttt{BFS-Prover}, a scalable expert iteration framework, featuring three key innovations. First, we implement strategic data filtering at each expert iteration round, excluding problems solvable via beam search node expansion to focus on harder cases. Second, we improve the sample efficiency of BFS through Direct Preference Optimization (DPO) applied to state-tactic pairs automatically annotated with compiler error feedback, refining the LLM's policy to prioritize productive expansions. Third, we employ length normalization in BFS to encourage exploration of deeper proof paths. \texttt{BFS-Prover} achieves a score of $71.31$ on the MiniF2F test set and therefore challenges the perceived necessity of complex tree search methods, demonstrating that BFS can achieve competitive performance when properly scaled.


Fine-tuning ChatGPT for Automatic Scoring of Written Scientific Explanations in Chinese

arXiv.org Artificial Intelligence

The development of explanations for scientific phenomena is essential in science assessment, but scoring student-written explanations remains challenging and resource-intensive. Large language models (LLMs) have shown promise in addressing this issue, particularly in alphabetic languages like English. However, their applicability to logographic languages is less explored. This study investigates the potential of fine-tuning ChatGPT, a leading LLM, to automatically score scientific explanations written in Chinese. Student responses to seven scientific explanation tasks were collected and automatically scored, with scoring accuracy examined in relation to reasoning complexity using the Kendall correlation. A qualitative analysis explored how linguistic features influenced scoring accuracy. The results show that domain-specific adaptation enables ChatGPT to score Chinese scientific explanations with accuracy. However, scoring accuracy correlates with reasoning complexity: a negative correlation for lower-level responses and a positive one for higher-level responses. The model overrates complex reasoning in low-level responses with intricate sentence structures and underrates high-level responses using concise causal reasoning. These correlations stem from linguistic features--simplicity and clarity enhance accuracy for lower-level responses, while comprehensiveness improves accuracy for higher-level ones. Simpler, shorter responses tend to score more accurately at lower levels, whereas longer, information-rich responses yield better accuracy at higher levels. These findings demonstrate the effectiveness of LLMs in automatic scoring within a Chinese context and emphasize the importance of linguistic features and reasoning complexity in fine-tuning scoring models for educational assessments.


Holistic Semantic Representation for Navigational Trajectory Generation

arXiv.org Artificial Intelligence

Trajectory generation has garnered significant attention from researchers in the field of spatio-temporal analysis, as it can generate substantial synthesized human mobility trajectories that enhance user privacy and alleviate data scarcity. However, existing trajectory generation methods often focus on improving trajectory generation quality from a singular perspective, lacking a comprehensive semantic understanding across various scales. Consequently, we are inspired to develop a HOlistic SEmantic Representation (HOSER) framework for navigational trajectory generation. Given an origin-and-destination (OD) pair and the starting time point of a latent trajectory, we first propose a Road Network Encoder to expand the receptive field of road- and zone-level semantics. Second, we design a Multi-Granularity Trajectory Encoder to integrate the spatio-temporal semantics of the generated trajectory at both the point and trajectory levels. Finally, we employ a Destination-Oriented Navigator to seamlessly integrate destination-oriented guidance. Extensive experiments on three real-world datasets demonstrate that HOSER outperforms state-of-the-art baselines by a significant margin. Moreover, the model's performance in few-shot learning and zero-shot learning scenarios further verifies the effectiveness of our holistic semantic representation.


CAD-GPT: Synthesising CAD Construction Sequence with Spatial Reasoning-Enhanced Multimodal LLMs

arXiv.org Artificial Intelligence

Computer-aided design (CAD) significantly enhances the efficiency, accuracy, and innovation of design processes by enabling precise 2D and 3D modeling, extensive analysis, and optimization. Existing methods for creating CAD models rely on latent vectors or point clouds, which are difficult to obtain and costly to store. Recent advances in Multimodal Large Language Models (MLLMs) have inspired researchers to use natural language instructions and images for CAD model construction. However, these models still struggle with inferring accurate 3D spatial location and orientation, leading to inaccuracies in determining the spatial 3D starting points and extrusion directions for constructing geometries. This work introduces CAD-GPT, a CAD synthesis method with spatial reasoning-enhanced MLLM that takes either a single image or a textual description as input. To achieve precise spatial inference, our approach introduces a 3D Modeling Spatial Mechanism. This method maps 3D spatial positions and 3D sketch plane rotation angles into a 1D linguistic feature space using a specialized spatial unfolding mechanism, while discretizing 2D sketch coordinates into an appropriate planar space to enable precise determination of spatial starting position, sketch orientation, and 2D sketch coordinate translations. Extensive experiments demonstrate that CAD-GPT consistently outperforms existing state-of-the-art methods in CAD model synthesis, both quantitatively and qualitatively.


Defensive Dual Masking for Robust Adversarial Defense

arXiv.org Artificial Intelligence

The field of textual adversarial defenses has gained considerable attention in recent years due to the increasing vulnerability of natural language processing (NLP) models to adversarial attacks, which exploit subtle perturbations in input text to deceive models. This paper introduces the Defensive Dual Masking (DDM) algorithm, a novel approach designed to enhance model robustness against such attacks. DDM utilizes a unique adversarial training strategy where [MASK] tokens are strategically inserted into training samples to prepare the model to handle adversarial perturbations more effectively. During inference, potentially adversarial tokens are dynamically replaced with [MASK] tokens to neutralize potential threats while preserving the core semantics of the input. The theoretical foundation of our approach is explored, demonstrating how the selective masking mechanism strengthens the model's ability to identify and mitigate adversarial manipulations. Our empirical evaluation across a diverse set of benchmark datasets and attack mechanisms consistently shows that DDM outperforms state-of-the-art defense techniques, improving model accuracy and robustness. Moreover, when applied to Large Language Models (LLMs), DDM also enhances their resilience to adversarial attacks, providing a scalable defense mechanism for large-scale NLP applications.


Context-Informed Machine Translation of Manga using Multimodal Large Language Models

arXiv.org Artificial Intelligence

Due to the significant time and effort required for handcrafting translations, most manga never leave the domestic Japanese market. Automatic manga translation is a promising potential solution. However, it is a budding and underdeveloped field and presents complexities even greater than those found in standard translation due to the need to effectively incorporate visual elements into the translation process to resolve ambiguities. In this work, we investigate to what extent multimodal large language models (LLMs) can provide effective manga translation, thereby assisting manga authors and publishers in reaching wider audiences. Specifically, we propose a methodology that leverages the vision component of multimodal LLMs to improve translation quality and evaluate the impact of translation unit size, context length, and propose a token efficient approach for manga translation. Moreover, we introduce a new evaluation dataset -- the first parallel Japanese-Polish manga translation dataset -- as part of a benchmark to be used in future research. Finally, we contribute an open-source software suite, enabling others to benchmark LLMs for manga translation. Our findings demonstrate that our proposed methods achieve state-of-the-art results for Japanese-English translation and set a new standard for Japanese-Polish.