Goto

Collaborating Authors

 Yang, Jiaqi


HySurvPred: Multimodal Hyperbolic Embedding with Angle-Aware Hierarchical Contrastive Learning and Uncertainty Constraints for Survival Prediction

arXiv.org Artificial Intelligence

Multimodal learning that integrates histopathology images and genomic data holds great promise for cancer survival prediction. However, existing methods face key limitations: 1) They rely on multimodal mapping and metrics in Euclidean space, which cannot fully capture the hierarchical structures in histopathology (among patches from different resolutions) and genomics data (from genes to pathways). 2) They discretize survival time into independent risk intervals, which ignores its continuous and ordinal nature and fails to achieve effective optimization. 3) They treat censorship as a binary indicator, excluding censored samples from model optimization and not making full use of them. To address these challenges, we propose HySurvPred, a novel framework for survival prediction that integrates three key modules: Multimodal Hyperbolic Mapping (MHM), Angle-aware Ranking-based Contrastive Loss (ARCL) and Censor-Conditioned Uncertainty Constraint (CUC). Instead of relying on Euclidean space, we design the MHM module to explore the inherent hierarchical structures within each modality in hyperbolic space. To better integrate multimodal features in hyperbolic space, we introduce the ARCL module, which uses ranking-based contrastive learning to preserve the ordinal nature of survival time, along with the CUC module to fully explore the censored data. Extensive experiments demonstrate that our method outperforms state-of-the-art methods on five benchmark datasets. The source code is to be released.


Multimodal Language Modeling for High-Accuracy Single Cell Transcriptomics Analysis and Generation

arXiv.org Artificial Intelligence

Pre-trained language models (PLMs) have revolutionized scientific research, yet their application to single-cell analysis remains limited. Text PLMs cannot process single-cell RNA sequencing data, while cell PLMs lack the ability to handle free text, restricting their use in multimodal tasks. Existing efforts to bridge these modalities often suffer from information loss or inadequate single-modal pre-training, leading to suboptimal performances. To address these challenges, we propose Single-Cell MultiModal Generative Pre-trained Transformer (scMMGPT), a unified PLM for joint cell and text modeling. scMMGPT effectively integrates the state-of-the-art cell and text PLMs, facilitating cross-modal knowledge sharing for improved performance. To bridge the text-cell modality gap, scMMGPT leverages dedicated cross-modal projectors, and undergoes extensive pre-training on 27 million cells -- the largest dataset for multimodal cell-text PLMs to date. This large-scale pre-training enables scMMGPT to excel in joint cell-text tasks, achieving an 84\% relative improvement of textual discrepancy for cell description generation, 20.5\% higher accuracy for cell type annotation, and 4\% improvement in $k$-NN accuracy for text-conditioned pseudo-cell generation, outperforming baselines.


Stability and Generalization of Quantum Neural Networks

arXiv.org Machine Learning

Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly growing field of quantum machine learning. While their empirical success is evident, the theoretical explorations of QNNs, particularly their generalization properties, are less developed and primarily focus on the uniform convergence approach. In this paper, we exploit an advanced tool in classical learning theory, i.e., algorithmic stability, to study the generalization of QNNs. We first establish high-probability generalization bounds for QNNs via uniform stability. Our bounds shed light on the key factors influencing the generalization performance of QNNs and provide practical insights into both the design and training processes. We next explore the generalization of QNNs on near-term noisy intermediate-scale quantum (NISQ) devices, highlighting the potential benefits of quantum noise. Moreover, we argue that our previous analysis characterizes worst-case generalization guarantees, and we establish a refined optimization-dependent generalization bound for QNNs via on-average stability. Numerical experiments on various real-world datasets support our theoretical findings.


DFF: Decision-Focused Fine-tuning for Smarter Predict-then-Optimize with Limited Data

arXiv.org Artificial Intelligence

Decision-focused learning (DFL) offers an end-to-end approach to the predict-then-optimize (PO) framework by training predictive models directly on decision loss (DL), enhancing decision-making performance within PO contexts. However, the implementation of DFL poses distinct challenges. Primarily, DL can result in deviation from the physical significance of the predictions under limited data. Additionally, some predictive models are non-differentiable or black-box, which cannot be adjusted using gradient-based methods. To tackle the above challenges, we propose a novel framework, Decision-Focused Fine-tuning (DFF), which embeds the DFL module into the PO pipeline via a novel bias correction module. DFF is formulated as a constrained optimization problem that maintains the proximity of the DL-enhanced model to the original predictive model within a defined trust region. We theoretically prove that DFF strictly confines prediction bias within a predetermined upper bound, even with limited datasets, thereby substantially reducing prediction shifts caused by DL under limited data. Furthermore, the bias correction module can be integrated into diverse predictive models, enhancing adaptability to a broad range of PO tasks. Extensive evaluations on synthetic and real-world datasets, including network flow, portfolio optimization, and resource allocation problems with different predictive models, demonstrate that DFF not only improves decision performance but also adheres to fine-tuning constraints, showcasing robust adaptability across various scenarios.


Active Learning with Variational Quantum Circuits for Quantum Process Tomography

arXiv.org Artificial Intelligence

Quantum process tomography (QPT), used for reconstruction of an unknown quantum process from measurement data, is a fundamental tool for the diagnostic and full characterization of quantum systems. It relies on querying a set of quantum states as input to the quantum process. Previous works commonly use a straightforward strategy to select a set of quantum states randomly, overlooking differences in informativeness among quantum states. Since querying the quantum system requires multiple experiments that can be prohibitively costly, it is always the case that there are not enough quantum states for high-quality reconstruction. In this paper, we propose a general framework for active learning (AL) to adaptively select a set of informative quantum states that improves the reconstruction most efficiently. In particular, we introduce a learning framework that leverages the widely-used variational quantum circuits (VQCs) to perform the QPT task and integrate our AL algorithms into the query step. We design and evaluate three various types of AL algorithms: committee-based, uncertainty-based, and diversity-based, each exhibiting distinct advantages in terms of performance and computational cost. Additionally, we provide a guideline for selecting algorithms suitable for different scenarios. Numerical results demonstrate that our algorithms achieve significantly improved reconstruction compared to the baseline method that selects a set of quantum states randomly. Moreover, these results suggest that active learning based approaches are applicable to other complicated learning tasks in large-scale quantum information processing.


FADA: Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation

arXiv.org Artificial Intelligence

Diffusion-based audio-driven talking avatar methods have recently gained attention for their high-fidelity, vivid, and expressive results. However, their slow inference speed limits practical applications. Despite the development of various distillation techniques for diffusion models, we found that naive diffusion distillation methods do not yield satisfactory results. Distilled models exhibit reduced robustness with open-set input images and a decreased correlation between audio and video compared to teacher models, undermining the advantages of diffusion models. To address this, we propose FADA (Fast Diffusion Avatar Synthesis with Mixed-Supervised Multi-CFG Distillation). We first designed a mixed-supervised loss to leverage data of varying quality and enhance the overall model capability as well as robustness. Additionally, we propose a multi-CFG distillation with learnable tokens to utilize the correlation between audio and reference image conditions, reducing the threefold inference runs caused by multi-CFG with acceptable quality degradation. Extensive experiments across multiple datasets show that FADA generates vivid videos comparable to recent diffusion model-based methods while achieving an NFE speedup of 4.17-12.5 times. Demos are available at our webpage http://fadavatar.github.io.


A Multimodal Approach Combining Structural and Cross-domain Textual Guidance for Weakly Supervised OCT Segmentation

arXiv.org Artificial Intelligence

Accurate segmentation of Optical Coherence Tomography (OCT) images is crucial for diagnosing and monitoring retinal diseases. However, the labor-intensive nature of pixel-level annotation limits the scalability of supervised learning with large datasets. Weakly Supervised Semantic Segmentation (WSSS) provides a promising alternative by leveraging image-level labels. In this study, we propose a novel WSSS approach that integrates structural guidance with text-driven strategies to generate high-quality pseudo labels, significantly improving segmentation performance. In terms of visual information, our method employs two processing modules that exchange raw image features and structural features from OCT images, guiding the model to identify where lesions are likely to occur. In terms of textual information, we utilize large-scale pretrained models from cross-domain sources to implement label-informed textual guidance and synthetic descriptive integration with two textual processing modules that combine local semantic features with consistent synthetic descriptions. By fusing these visual and textual components within a multimodal framework, our approach enhances lesion localization accuracy. Experimental results on three OCT datasets demonstrate that our method achieves state-of-the-art performance, highlighting its potential to improve diagnostic accuracy and efficiency in medical imaging.


MobilePortrait: Real-Time One-Shot Neural Head Avatars on Mobile Devices

arXiv.org Artificial Intelligence

Existing neural head avatars methods have achieved significant progress in the image quality and motion range of portrait animation. However, these methods neglect the computational overhead, and to the best of our knowledge, none is designed to run on mobile devices. This paper presents MobilePortrait, a lightweight one-shot neural head avatars method that reduces learning complexity by integrating external knowledge into both the motion modeling and image synthesis, enabling real-time inference on mobile devices. Specifically, we introduce a mixed representation of explicit and implicit keypoints for precise motion modeling and precomputed visual features for enhanced foreground and background synthesis. With these two key designs and using simple U-Nets as backbones, our method achieves state-of-the-art performance with less than one-tenth the computational demand. It has been validated to reach speeds of over 100 FPS on mobile devices and support both video and audio-driven inputs.


Relative Pose for Nonrigid Multi-Perspective Cameras: The Static Case

arXiv.org Artificial Intelligence

Multi-perspective cameras with potentially non-overlapping fields of view have become an important exteroceptive sensing modality in a number of applications such as intelligent vehicles, drones, and mixed reality headsets. In this work, we challenge one of the basic assumptions made in these scenarios, which is that the multi-camera rig is rigid. More specifically, we are considering the problem of estimating the relative pose between a static non-rigid rig in different spatial orientations while taking into account the effect of gravity onto the system. The deformable physical connections between each camera and the body center are approximated by a simple cantilever model, and inserted into the generalized epipolar constraint. Our results lead us to the important insight that the latent parameters of the deformation model, meaning the gravity vector in both views, become observable. We present a concise analysis of the observability of all variables based on noise, outliers, and rig rigidity for two different algorithms. The first one is a vision-only alternative, while the second one makes use of additional gravity measurements. To conclude, we demonstrate the ability to sense gravity in a real-world example, and discuss practical implications.


Revisiting Event-based Video Frame Interpolation

arXiv.org Artificial Intelligence

Dynamic vision sensors or event cameras provide rich complementary information for video frame interpolation. Existing state-of-the-art methods follow the paradigm of combining both synthesis-based and warping networks. However, few of those methods fully respect the intrinsic characteristics of events streams. Given that event cameras only encode intensity changes and polarity rather than color intensities, estimating optical flow from events is arguably more difficult than from RGB information. We therefore propose to incorporate RGB information in an event-guided optical flow refinement strategy. Moreover, in light of the quasi-continuous nature of the time signals provided by event cameras, we propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages rather than in a single, long stage. Extensive experiments on both synthetic and real-world datasets show that these modifications lead to more reliable and realistic intermediate frame results than previous video frame interpolation methods. Our findings underline that a careful consideration of event characteristics such as high temporal density and elevated noise benefits interpolation accuracy.