Goto

Collaborating Authors

 Yang, Jiancheng


EyeFound: A Multimodal Generalist Foundation Model for Ophthalmic Imaging

arXiv.org Artificial Intelligence

Artificial intelligence (AI) is vital in ophthalmology, tackling tasks like diagnosis, classification, and visual question answering (VQA). However, existing AI models in this domain often require extensive annotation and are task-specific, limiting their clinical utility. While recent developments have brought about foundation models for ophthalmology, they are limited by the need to train separate weights for each imaging modality, preventing a comprehensive representation of multi-modal features. This highlights the need for versatile foundation models capable of handling various tasks and modalities in ophthalmology. To address this gap, we present EyeFound, a multimodal foundation model for ophthalmic images. Unlike existing models, EyeFound learns generalizable representations from unlabeled multimodal retinal images, enabling efficient model adaptation across multiple applications. Trained on 2.78 million images from 227 hospitals across 11 ophthalmic modalities, EyeFound facilitates generalist representations and diverse multimodal downstream tasks, even for detecting challenging rare diseases. It outperforms previous work RETFound in diagnosing eye diseases, predicting systemic disease incidents, and zero-shot multimodal VQA. EyeFound provides a generalizable solution to improve model performance and lessen the annotation burden on experts, facilitating widespread clinical AI applications for retinal imaging.


Deep Rib Fracture Instance Segmentation and Classification from CT on the RibFrac Challenge

arXiv.org Artificial Intelligence

Rib fractures are a common and potentially severe injury that can be challenging and labor-intensive to detect in CT scans. While there have been efforts to address this field, the lack of large-scale annotated datasets and evaluation benchmarks has hindered the development and validation of deep learning algorithms. To address this issue, the RibFrac Challenge was introduced, providing a benchmark dataset of over 5,000 rib fractures from 660 CT scans, with voxel-level instance mask annotations and diagnosis labels for four clinical categories (buckle, nondisplaced, displaced, or segmental). The challenge includes two tracks: a detection (instance segmentation) track evaluated by an FROC-style metric and a classification track evaluated by an F1-style metric. During the MICCAI 2020 challenge period, 243 results were evaluated, and seven teams were invited to participate in the challenge summary. The analysis revealed that several top rib fracture detection solutions achieved performance comparable or even better than human experts. Nevertheless, the current rib fracture classification solutions are hardly clinically applicable, which can be an interesting area in the future. As an active benchmark and research resource, the data and online evaluation of the RibFrac Challenge are available at the challenge website. As an independent contribution, we have also extended our previous internal baseline by incorporating recent advancements in large-scale pretrained networks and point-based rib segmentation techniques. The resulting FracNet+ demonstrates competitive performance in rib fracture detection, which lays a foundation for further research and development in AI-assisted rib fracture detection and diagnosis.


MedShapeNet -- A Large-Scale Dataset of 3D Medical Shapes for Computer Vision

arXiv.org Artificial Intelligence

Prior to the deep learning era, shape was commonly used to describe the objects. Nowadays, state-of-the-art (SOTA) algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from numerous shape-related publications in premier vision conferences as well as the growing popularity of ShapeNet (about 51,300 models) and Princeton ModelNet (127,915 models). For the medical domain, we present a large collection of anatomical shapes (e.g., bones, organs, vessels) and 3D models of surgical instrument, called MedShapeNet, created to facilitate the translation of data-driven vision algorithms to medical applications and to adapt SOTA vision algorithms to medical problems. As a unique feature, we directly model the majority of shapes on the imaging data of real patients. As of today, MedShapeNet includes 23 dataset with more than 100,000 shapes that are paired with annotations (ground truth). Our data is freely accessible via a web interface and a Python application programming interface (API) and can be used for discriminative, reconstructive, and variational benchmarks as well as various applications in virtual, augmented, or mixed reality, and 3D printing. Exemplary, we present use cases in the fields of classification of brain tumors, facial and skull reconstructions, multi-class anatomy completion, education, and 3D printing. In future, we will extend the data and improve the interfaces. The project pages are: https://medshapenet.ikim.nrw/ and https://github.com/Jianningli/medshapenet-feedback


Efficient Anatomical Labeling of Pulmonary Tree Structures via Implicit Point-Graph Networks

arXiv.org Artificial Intelligence

Pulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the many complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. In theory, they can be modeled using high-resolution image stacks. Unfortunately, standard CNN approaches operating on dense voxel grids are prohibitively expensive. To remedy this, we introduce a point-based approach that preserves graph connectivity of tree skeleton and incorporates an implicit surface representation. It delivers SOTA accuracy at a low computational cost and the resulting models have usable surfaces. Due to the scarcity of publicly accessible data, we have also curated an extensive dataset to evaluate our approach and will make it public.


RibSeg v2: A Large-scale Benchmark for Rib Labeling and Anatomical Centerline Extraction

arXiv.org Artificial Intelligence

Automatic rib labeling and anatomical centerline extraction are common prerequisites for various clinical applications. Prior studies either use in-house datasets that are inaccessible to communities, or focus on rib segmentation that neglects the clinical significance of rib labeling. To address these issues, we extend our prior dataset (RibSeg) on the binary rib segmentation task to a comprehensive benchmark, named RibSeg v2, with 660 CT scans (15,466 individual ribs in total) and annotations manually inspected by experts for rib labeling and anatomical centerline extraction. Based on the RibSeg v2, we develop a pipeline including deep learning-based methods for rib labeling, and a skeletonization-based method for centerline extraction. To improve computational efficiency, we propose a sparse point cloud representation of CT scans and compare it with standard dense voxel grids. Moreover, we design and analyze evaluation metrics to address the key challenges of each task. Our dataset, code, and model are available online to facilitate open research at https://github.com/M3DV/RibSeg


Scale-aware Test-time Click Adaptation for Pulmonary Nodule and Mass Segmentation

arXiv.org Artificial Intelligence

Pulmonary nodules and masses are crucial imaging features in lung cancer screening that require careful management in clinical diagnosis. Despite the success of deep learning-based medical image segmentation, the robust performance on various sizes of lesions of nodule and mass is still challenging. In this paper, we propose a multi-scale neural network with scale-aware test-time adaptation to address this challenge. Specifically, we introduce an adaptive Scale-aware Test-time Click Adaptation method based on effortlessly obtainable lesion clicks as test-time cues to enhance segmentation performance, particularly for large lesions. The proposed method can be seamlessly integrated into existing networks. Extensive experiments on both open-source and in-house datasets consistently demonstrate the effectiveness of the proposed method over some CNN and Transformer-based segmentation methods.


The Impact of ChatGPT and LLMs on Medical Imaging Stakeholders: Perspectives and Use Cases

arXiv.org Artificial Intelligence

This study investigates the transformative potential of Large Language Models (LLMs), such as OpenAI ChatGPT, in medical imaging. With the aid of public data, these models, which possess remarkable language understanding and generation capabilities, are augmenting the interpretive skills of radiologists, enhancing patient-physician communication, and streamlining clinical workflows. The paper introduces an analytic framework for presenting the complex interactions between LLMs and the broader ecosystem of medical imaging stakeholders, including businesses, insurance entities, governments, research institutions, and hospitals (nicknamed BIGR-H). Through detailed analyses, illustrative use cases, and discussions on the broader implications and future directions, this perspective seeks to raise discussion in strategic planning and decision-making in the era of AI-enabled healthcare.


Topology Repairing of Disconnected Pulmonary Airways and Vessels: Baselines and a Dataset

arXiv.org Artificial Intelligence

Accurate segmentation of pulmonary airways and vessels is crucial for the diagnosis and treatment of pulmonary diseases. However, current deep learning approaches suffer from disconnectivity issues that hinder their clinical usefulness. To address this challenge, we propose a post-processing approach that leverages a data-driven method to repair the topology of disconnected pulmonary tubular structures. Our approach formulates the problem as a keypoint detection task, where a neural network is trained to predict keypoints that can bridge disconnected components. We use a training data synthesis pipeline that generates disconnected data from complete pulmonary structures. Moreover, the new Pulmonary Tree Repairing (PTR) dataset is publicly available, which comprises 800 complete 3D models of pulmonary airways, arteries, and veins, as well as the synthetic disconnected data.


MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

arXiv.org Artificial Intelligence

We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12 datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28x28 (2D) or 28x28x28 (3D) with the corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset, consisting of 708,069 2D images and 10,214 3D images in total, could support numerous research / educational purposes in biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST v2, including 2D / 3D neural networks and open-source / commercial AutoML tools. The data and code are publicly available at https://medmnist.com/.


Asymmetric 3D Context Fusion for Universal Lesion Detection

arXiv.org Artificial Intelligence

Modeling 3D context is essential for high-performance 3D medical image analysis. Although 2D networks benefit from large-scale 2D supervised pretraining, it is weak in capturing 3D context. 3D networks are strong in 3D context yet lack supervised pretraining. As an emerging technique, \emph{3D context fusion operator}, which enables conversion from 2D pretrained networks, leverages the advantages of both and has achieved great success. Existing 3D context fusion operators are designed to be spatially symmetric, i.e., performing identical operations on each 2D slice like convolutions. However, these operators are not truly equivariant to translation, especially when only a few 3D slices are used as inputs. In this paper, we propose a novel asymmetric 3D context fusion operator (A3D), which uses different weights to fuse 3D context from different 2D slices. Notably, A3D is NOT translation-equivariant while it significantly outperforms existing symmetric context fusion operators without introducing large computational overhead. We validate the effectiveness of the proposed method by extensive experiments on DeepLesion benchmark, a large-scale public dataset for universal lesion detection from computed tomography (CT). The proposed A3D consistently outperforms symmetric context fusion operators by considerable margins, and establishes a new \emph{state of the art} on DeepLesion. To facilitate open research, our code and model in PyTorch are available at https://github.com/M3DV/AlignShift.