Yang, Dayu
Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs
Yang, Dayu, Liu, Tianyang, Zhang, Daoan, Simoulin, Antoine, Liu, Xiaoyi, Cao, Yuwei, Teng, Zhaopu, Qian, Xin, Yang, Grey, Luo, Jiebo, McAuley, Julian
In large language models (LLMs), code and reasoning reinforce each other: code offers an abstract, modular, and logic-driven structure that supports reasoning, while reasoning translates high-level goals into smaller, executable steps that drive more advanced code intelligence. In this study, we examine how code serves as a structured medium for enhancing reasoning: it provides verifiable execution paths, enforces logical decomposition, and enables runtime validation. We also explore how improvements in reasoning have transformed code intelligence from basic completion to advanced capabilities, enabling models to address complex software engineering tasks through planning and debugging. Finally, we identify key challenges and propose future research directions to strengthen this synergy, ultimately improving LLM's performance in both areas.
Enhancing Table Representations with LLM-powered Synthetic Data Generation
Yang, Dayu, Monaikul, Natawut, Ding, Amanda, Tan, Bozhao, Mosaliganti, Kishore, Iyengar, Giri
In the era of data-driven decision-making, accurate table-level representations and efficient table recommendation systems are becoming increasingly crucial for improving table management, discovery, and analysis. However, existing approaches to tabular data representation often face limitations, primarily due to their focus on cell-level tasks and the lack of high-quality training data. To address these challenges, we first formulate a clear definition of table similarity in the context of data transformation activities within data-driven enterprises. This definition serves as the foundation for synthetic data generation, which require a well-defined data generation process. Building on this, we propose a novel synthetic data generation pipeline that harnesses the code generation and data manipulation capabilities of Large Language Models (LLMs) to create a large-scale synthetic dataset tailored for table-level representation learning. Through manual validation and performance comparisons on the table recommendation task, we demonstrate that the synthetic data generated by our pipeline aligns with our proposed definition of table similarity and significantly enhances table representations, leading to improved recommendation performance.
Behavior Alignment: A New Perspective of Evaluating LLM-based Conversational Recommendation Systems
Yang, Dayu, Chen, Fumian, Fang, Hui
Large Language Models (LLMs) have demonstrated great potential in Conversational Recommender Systems (CRS). However, the application of LLMs to CRS has exposed a notable discrepancy in behavior between LLM-based CRS and human recommenders: LLMs often appear inflexible and passive, frequently rushing to complete the recommendation task without sufficient inquiry.This behavior discrepancy can lead to decreased accuracy in recommendations and lower user satisfaction. Despite its importance, existing studies in CRS lack a study about how to measure such behavior discrepancy. To fill this gap, we propose Behavior Alignment, a new evaluation metric to measure how well the recommendation strategies made by a LLM-based CRS are consistent with human recommenders'. Our experiment results show that the new metric is better aligned with human preferences and can better differentiate how systems perform than existing evaluation metrics. As Behavior Alignment requires explicit and costly human annotations on the recommendation strategies, we also propose a classification-based method to implicitly measure the Behavior Alignment based on the responses. The evaluation results confirm the robustness of the method.
Predicting Mergers and Acquisitions: Temporal Dynamic Industry Networks
Yang, Dayu
M&A activities are pivotal for market consolidation, enabling firms to augment market power through strategic complementarities. Existing research often overlooks the peer effect, the mutual influence of M&A behaviors among firms, and fails to capture complex interdependencies within industry networks. Common approaches suffer from reliance on ad-hoc feature engineering, data truncation leading to significant information loss, reduced predictive accuracy, and challenges in real-world application. Additionally, the rarity of M&A events necessitates data rebalancing in conventional models, introducing bias and undermining prediction reliability. We propose an innovative M&A predictive model utilizing the Temporal Dynamic Industry Network (TDIN), leveraging temporal point processes and deep learning to adeptly capture industry-wide M&A dynamics. This model facilitates accurate, detailed deal-level predictions without arbitrary data manipulation or rebalancing, demonstrated through superior evaluation results from M&A cases between January 1997 and December 2020. Our approach marks a significant improvement over traditional models by providing detailed insights into M&A activities and strategic recommendations for specific firms.
Zero-shot Query Reformulation for Conversational Search
Yang, Dayu, Zhang, Yue, Fang, Hui
As the popularity of voice assistants continues to surge, conversational search has gained increased attention in Information Retrieval. However, data sparsity issues in conversational search significantly hinder the progress of supervised conversational search methods. Consequently, researchers are focusing more on zero-shot conversational search approaches. Nevertheless, existing zero-shot methods face three primary limitations: they are not universally applicable to all retrievers, their effectiveness lacks sufficient explainability, and they struggle to resolve common conversational ambiguities caused by omission. To address these limitations, we introduce a novel Zero-shot Query Reformulation (ZeQR) framework that reformulates queries based on previous dialogue contexts without requiring supervision from conversational search data. Specifically, our framework utilizes language models designed for machine reading comprehension tasks to explicitly resolve two common ambiguities: coreference and omission, in raw queries. In comparison to existing zero-shot methods, our approach is universally applicable to any retriever without additional adaptation or indexing. It also provides greater explainability and effectively enhances query intent understanding because ambiguities are explicitly and proactively resolved. Through extensive experiments on four TREC conversational datasets, we demonstrate the effectiveness of our method, which consistently outperforms state-of-the-art baselines.