Goto

Collaborating Authors

 Yan, Jiangpeng


Ten Challenging Problems in Federated Foundation Models

arXiv.org Artificial Intelligence

Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.


Uncertainty-driven Trajectory Truncation for Data Augmentation in Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Equipped with the trained environmental dynamics, model-based offline reinforcement learning (RL) algorithms can often successfully learn good policies from fixed-sized datasets, even some datasets with poor quality. Unfortunately, however, it can not be guaranteed that the generated samples from the trained dynamics model are reliable (e.g., some synthetic samples may lie outside of the support region of the static dataset). To address this issue, we propose Trajectory Truncation with Uncertainty (TATU), which adaptively truncates the synthetic trajectory if the accumulated uncertainty along the trajectory is too large. We theoretically show the performance bound of TATU to justify its benefits. To empirically show the advantages of TATU, we first combine it with two classical model-based offline RL algorithms, MOPO and COMBO. Furthermore, we integrate TATU with several off-the-shelf model-free offline RL algorithms, e.g., BCQ. Experimental results on the D4RL benchmark show that TATU significantly improves their performance, often by a large margin. Code is available here.


Value Activation for Bias Alleviation: Generalized-activated Deep Double Deterministic Policy Gradients

arXiv.org Artificial Intelligence

It is vital to accurately estimate the value function in Deep Reinforcement Learning (DRL) such that the agent could execute proper actions instead of suboptimal ones. However, existing actor-critic methods suffer more or less from underestimation bias or overestimation bias, which negatively affect their performance. In this paper, we reveal a simple but effective principle: proper value correction benefits bias alleviation, where we propose the generalized-activated weighting operator that uses any non-decreasing function, namely activation function, as weights for better value estimation. Particularly, we integrate the generalized-activated weighting operator into value estimation and introduce a novel algorithm, Generalized-activated Deep Double Deterministic Policy Gradients (GD3). We theoretically show that GD3 is capable of alleviating the potential estimation bias. We interestingly find that simple activation functions lead to satisfying performance with no additional tricks, and could contribute to faster convergence. Experimental results on numerous challenging continuous control tasks show that GD3 with task-specific activation outperforms the common baseline methods. We also uncover a fact that fine-tuning the polynomial activation function achieves superior results on most of the tasks.


A Coarse-to-Fine Instance Segmentation Network with Learning Boundary Representation

arXiv.org Artificial Intelligence

Boundary-based instance segmentation has drawn much attention since of its attractive efficiency. However, existing methods suffer from the difficulty in long-distance regression. In this paper, we propose a coarse-to-fine module to address the problem. Approximate boundary points are generated at the coarse stage and then features of these points are sampled and fed to a refined regressor for fine prediction. It is end-to-end trainable since differential sampling operation is well supported in the module. Furthermore, we design a holistic boundary-aware branch and introduce instance-agnostic supervision to assist regression. Equipped with ResNet-101, our approach achieves 31.7\% mask AP on COCO dataset with single-scale training and testing, outperforming the baseline 1.3\% mask AP with less than 1\% additional parameters and GFLOPs. Experiments also show that our proposed method achieves competitive performance compared to existing boundary-based methods with a lightweight design and a simple pipeline.