Goto

Collaborating Authors

 Yadav, Amit Kumar Singh


FairSSD: Understanding Bias in Synthetic Speech Detectors

arXiv.org Artificial Intelligence

Methods that can generate synthetic speech which is perceptually indistinguishable from speech recorded by a human speaker, are easily available. Several incidents report misuse of synthetic speech generated from these methods to commit fraud. To counter such misuse, many methods have been proposed to detect synthetic speech. Some of these detectors are more interpretable, can generalize to detect synthetic speech in the wild and are robust to noise. However, limited work has been done on understanding bias in these detectors. In this work, we examine bias in existing synthetic speech detectors to determine if they will unfairly target a particular gender, age and accent group. We also inspect whether these detectors will have a higher misclassification rate for bona fide speech from speech-impaired speakers w.r.t fluent speakers. Extensive experiments on 6 existing synthetic speech detectors using more than 0.9 million speech signals demonstrate that most detectors are gender, age and accent biased, and future work is needed to ensure fairness. To support future research, we release our evaluation dataset, models used in our study and source code at https://gitlab.com/viper-purdue/fairssd.


Compression Robust Synthetic Speech Detection Using Patched Spectrogram Transformer

arXiv.org Artificial Intelligence

Many deep learning synthetic speech generation tools are readily available. The use of synthetic speech has caused financial fraud, impersonation of people, and misinformation to spread. For this reason forensic methods that can detect synthetic speech have been proposed. Existing methods often overfit on one dataset and their performance reduces substantially in practical scenarios such as detecting synthetic speech shared on social platforms. In this paper we propose, Patched Spectrogram Synthetic Speech Detection Transformer (PS3DT), a synthetic speech detector that converts a time domain speech signal to a mel-spectrogram and processes it in patches using a transformer neural network. We evaluate the detection performance of PS3DT on ASVspoof2019 dataset. Our experiments show that PS3DT performs well on ASVspoof2019 dataset compared to other approaches using spectrogram for synthetic speech detection. We also investigate generalization performance of PS3DT on In-the-Wild dataset. PS3DT generalizes well than several existing methods on detecting synthetic speech from an out-of-distribution dataset. We also evaluate robustness of PS3DT to detect telephone quality synthetic speech and synthetic speech shared on social platforms (compressed speech). PS3DT is robust to compression and can detect telephone quality synthetic speech better than several existing methods.