Xue, Haotian
Pixel is a Barrier: Diffusion Models Are More Adversarially Robust Than We Think
Xue, Haotian, Chen, Yongxin
Adversarial examples for diffusion models are widely used as solutions for safety concerns. By adding adversarial perturbations to personal images, attackers can not edit or imitate them easily. However, it is essential to note that all these protections target the latent diffusion model (LDMs), the adversarial examples for diffusion models in the pixel space (PDMs) are largely overlooked. This may mislead us to think that the diffusion models are vulnerable to adversarial attacks like most deep models. In this paper, we show novel findings that: even though gradient-based white-box attacks can be used to attack the LDMs, they fail to attack PDMs. This finding is supported by extensive experiments of almost a wide range of attacking methods on various PDMs and LDMs with different model structures, which means diffusion models are indeed much more robust against adversarial attacks. We also find that PDMs can be used as an off-the-shelf purifier to effectively remove the adversarial patterns that were generated on LDMs to protect the images, which means that most protection methods nowadays, to some extent, cannot protect our images from malicious attacks. We hope that our insights will inspire the community to rethink the adversarial samples for diffusion models as protection methods and move forward to more effective protection. Codes are available in https://github.com/xavihart/PDM-Pure.
Toward effective protection against diffusion based mimicry through score distillation
Xue, Haotian, Liang, Chumeng, Wu, Xiaoyu, Chen, Yongxin
While generative diffusion models excel in producing high-quality images, they can also be misused to mimic authorized images, posing a significant threat to AI systems. Efforts have been made to add calibrated perturbations to protect images from diffusion-based mimicry pipelines. However, most of the existing methods are too ineffective and even impractical to be used by individual users due to their high computation and memory requirements. In this work, we present novel findings on attacking latent diffusion models (LDM) and propose new plug-and-play strategies for more effective protection. In particular, we explore the bottleneck in attacking an LDM, discovering that the encoder module rather than the denoiser module is the vulnerable point. Based on this insight, we present our strategy using Score Distillation Sampling (SDS) to double the speed of protection and reduce memory occupation by half without compromising its strength. Additionally, we provide a robust protection strategy by counterintuitively minimizing the semantic loss, which can assist in generating more natural perturbations. Finally, we conduct extensive experiments to substantiate our findings and comprehensively evaluate our newly proposed strategies. We hope our insights and protective measures can contribute to better defense against malicious diffusion-based mimicry, advancing the development of secure AI systems. The code is available in https://github.com/xavihart/Diff-Protect
A Shared Control Approach Based on First-Order Dynamical Systems and Closed-Loop Variable Stiffness Control
Xue, Haotian, Michel, Youssef, Lee, Dongheui
In this paper, we present a novel learning-based shared control framework. This framework deploys first-order Dynamical Systems (DS) as motion generators providing the desired reference motion, and a Variable Stiffness Dynamical Systems (VSDS) \cite{chen2021closed} for haptic guidance. We show how to shape several features of our controller in order to achieve authority allocation, local motion refinement, in addition to the inherent ability of the controller to automatically synchronize with the human state during joint task execution. We validate our approach in a teleoperated task scenario, where we also showcase the ability of our framework to deal with situations that require updating task knowledge due to possible changes in the task scenario, or changes in the environment. Finally, we conduct a user study to compare the performance of our VSDS controller for guidance generation to two state-of-the-art controllers in a target reaching task. The result shows that our VSDS controller has the highest successful rate of task execution among all conditions. Besides, our VSDS controller helps reduce the execution time and task load significantly, and was selected as the most favorable controller by participants.
Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability
Xue, Haotian, Araujo, Alexandre, Hu, Bin, Chen, Yongxin
Neural networks are known to be susceptible to adversarial samples: small variations of natural examples crafted to deliberately mislead the models. While they can be easily generated using gradient-based techniques in digital and physical scenarios, they often differ greatly from the actual data distribution of natural images, resulting in a trade-off between strength and stealthiness. In this paper, we propose a novel framework dubbed Diffusion-Based Projected Gradient Descent (Diff-PGD) for generating realistic adversarial samples. By exploiting a gradient guided by a diffusion model, Diff-PGD ensures that adversarial samples remain close to the original data distribution while maintaining their effectiveness. Moreover, our framework can be easily customized for specific tasks such as digital attacks, physical-world attacks, and style-based attacks. Compared with existing methods for generating natural-style adversarial samples, our framework enables the separation of optimizing adversarial loss from other surrogate losses (e.g., content/smoothness/style loss), making it more stable and controllable. Finally, we demonstrate that the samples generated using Diff-PGD have better transferability and anti-purification power than traditional gradient-based methods.
3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive Physics under Challenging Scenes
Xue, Haotian, Torralba, Antonio, Tenenbaum, Joshua B., Yamins, Daniel LK, Li, Yunzhu, Tung, Hsiao-Yu
Given a visual scene, humans have strong intuitions about how a scene can evolve over time under given actions. The intuition, often termed visual intuitive physics, is a critical ability that allows us to make effective plans to manipulate the scene to achieve desired outcomes without relying on extensive trial and error. In this paper, we present a framework capable of learning 3D-grounded visual intuitive physics models from videos of complex scenes with fluids. Our method is composed of a conditional Neural Radiance Field (NeRF)-style visual frontend and a 3D point-based dynamics prediction backend, using which we can impose strong relational and structural inductive bias to capture the structure of the underlying environment. Unlike existing intuitive point-based dynamics works that rely on the supervision of dense point trajectory from simulators, we relax the requirements and only assume access to multi-view RGB images and (imperfect) instance masks acquired using color prior. This enables the proposed model to handle scenarios where accurate point estimation and tracking are hard or impossible. We generate datasets including three challenging scenarios involving fluid, granular materials, and rigid objects in the simulation. The datasets do not include any dense particle information so most previous 3D-based intuitive physics pipelines can barely deal with that. We show our model can make long-horizon future predictions by learning from raw images and significantly outperforms models that do not employ an explicit 3D representation space. We also show that once trained, our model can achieve strong generalization in complex scenarios under extrapolate settings.
A Hypothesis for the Aesthetic Appreciation in Neural Networks
Cheng, Xu, Wang, Xin, Xue, Haotian, Liang, Zhengyang, Zhang, Quanshi
This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent. The code will be released when the paper is accepted.