Goto

Collaborating Authors

 Xue, Hao


KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning

arXiv.org Artificial Intelligence

Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.


Embedding spatial context in urban traffic forecasting with contrastive pre-training

arXiv.org Artificial Intelligence

Urban traffic forecasting is a commonly encountered problem, with wide-ranging applications in fields such as urban planning, civil engineering and transport. In this paper, we study the enhancement of traffic forecasting with pre-training, focusing on spatio-temporal graph methods. While various machine learning methods to solve traffic forecasting problems have been explored and extensively studied, there is a gap of a more contextual approach: studying how relevant non-traffic data can improve prediction performance on traffic forecasting problems. We call this data spatial context. We introduce a novel method of combining road and traffic information through the notion of a traffic quotient graph, a quotient graph formed from road geometry and traffic sensors. We also define a way to encode this relationship in the form of a geometric encoder, pre-trained using contrastive learning methods and enhanced with OpenStreetMap data. We introduce and discuss ways to integrate this geometric encoder with existing graph neural network (GNN)-based traffic forecasting models, using a contrastive pre-training paradigm. We demonstrate the potential for this hybrid model to improve generalisation and performance with zero additional traffic data. Code for this paper is available at https://github.com/mattchrlw/forecasting-on-new-roads.


Long Context Modeling with Ranked Memory-Augmented Retrieval

arXiv.org Artificial Intelligence

Effective long-term memory management is crucial for language models handling extended contexts. We introduce a novel framework that dynamically ranks memory entries based on relevance. Unlike previous works, our model introduces a novel relevance scoring and a pointwise re-ranking model for key-value embeddings, inspired by learning-to-rank techniques in information retrieval. Enhanced Ranked Memory Augmented Retrieval ERMAR achieves state-of-the-art results on standard benchmarks.


COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition

arXiv.org Artificial Intelligence

Egocentric video-based models capture rich semantic information and have demonstrated strong performance in human activity recognition (HAR). However, their high power consumption, privacy concerns, and dependence on lighting conditions limit their feasibility for continuous on-device recognition. In contrast, inertial measurement unit (IMU) sensors offer an energy-efficient and privacy-preserving alternative, yet they suffer from limited large-scale annotated datasets, leading to weaker generalization in downstream tasks. To bridge this gap, we propose COMODO, a cross-modal self-supervised distillation framework that transfers rich semantic knowledge from the video modality to the IMU modality without requiring labeled annotations. COMODO leverages a pretrained and frozen video encoder to construct a dynamic instance queue, aligning the feature distributions of video and IMU embeddings. By distilling knowledge from video representations, our approach enables the IMU encoder to inherit rich semantic information from video while preserving its efficiency for real-world applications. Experiments on multiple egocentric HAR datasets demonstrate that COMODO consistently improves downstream classification performance, achieving results comparable to or exceeding fully supervised fine-tuned models. Moreover, COMODO exhibits strong cross-dataset generalization. Benefiting from its simplicity, our method is also generally applicable to various video and time-series pre-trained models, offering the potential to leverage more powerful teacher and student foundation models in future research. The code is available at https://github.com/Breezelled/COMODO .


TrajLLM: A Modular LLM-Enhanced Agent-Based Framework for Realistic Human Trajectory Simulation

arXiv.org Artificial Intelligence

This work leverages Large Language Models (LLMs) to simulate human mobility, addressing challenges like high costs and privacy concerns in traditional models. Our hierarchical framework integrates persona generation, activity selection, and destination prediction, using real-world demographic and psychological data to create realistic movement patterns. Both physical models and language models are employed to explore and demonstrate different methodologies for human mobility simulation. By structuring data with summarization and weighted density metrics, the system ensures scalable memory management while retaining actionable insights. Preliminary results indicate that LLM-driven simulations align with observed real-world patterns, offering scalable, interpretable insights for social problems such as urban planning, traffic management, and public health. The framework's ability to dynamically generate personas and activities enables it to provide adaptable and realistic daily routines. This study demonstrates the transformative potential of LLMs in advancing mobility modeling for societal and urban applications. The source code and interactive demo for our framework are available at https://github.com/cju0/TrajLLM.


RIDE: Enhancing Large Language Model Alignment through Restyled In-Context Learning Demonstration Exemplars

arXiv.org Artificial Intelligence

Alignment tuning is crucial for ensuring large language models (LLMs) behave ethically and helpfully. Current alignment approaches require high-quality annotations and significant training resources. This paper proposes a low-cost, tuning-free method using in-context learning (ICL) to enhance LLM alignment. Through an analysis of high-quality ICL demos, we identified style as a key factor influencing LLM alignment capabilities and explicitly restyled ICL exemplars based on this stylistic framework. Additionally, we combined the restyled demos to achieve a balance between the two conflicting aspects of LLM alignment--factuality and safety. We packaged the restyled examples as prompts to trigger few-shot learning, improving LLM alignment. Compared to the best baseline approach, with an average score of 5.00 as the maximum, our method achieves a maximum 0.10 increase on the Alpaca task (from 4.50 to 4.60), a 0.22 enhancement on the Just-eval benchmark (from 4.34 to 4.56), and a maximum improvement of 0.32 (from 3.53 to 3.85) on the MT-Bench dataset. We release the code and data at https://github.com/AnonymousCode-ComputerScience/RIDE.


ODEStream: A Buffer-Free Online Learning Framework with ODE-based Adaptor for Streaming Time Series Forecasting

arXiv.org Artificial Intelligence

Addressing the challenges of irregularity and concept drift in streaming time series is crucial in real-world predictive modelling. Previous studies in time series continual learning often propose models that require buffering of long sequences, potentially restricting the responsiveness of the inference system. Moreover, these models are typically designed for regularly sampled data, an unrealistic assumption in real-world scenarios. This paper introduces ODEStream, a novel buffer-free continual learning framework that incorporates a temporal isolation layer that integrates temporal dependencies within the data. Simultaneously, it leverages the capability of neural ordinary differential equations to process irregular sequences and generate a continuous data representation, enabling seamless adaptation to changing dynamics in a data streaming scenario. Our approach focuses on learning how the dynamics and distribution of historical data change with time, facilitating direct processing of streaming sequences. Evaluations on benchmark real-world datasets demonstrate that ODEStream outperforms the state-of-the-art online learning and streaming analysis baselines, providing accurate predictions over extended periods while minimising performance degradation over time by learning how the sequence dynamics change. Our code is available at: https://anonymous.4open.science/r/ODEStream-2BAC.


Exploring Capabilities of Time Series Foundation Models in Building Analytics

arXiv.org Artificial Intelligence

The growing integration of digitized infrastructure with Internet of Things (IoT) networks has transformed the management and optimization of building energy consumption. By leveraging IoT-based monitoring systems, stakeholders such as building managers, energy suppliers, and policymakers can make data-driven decisions to improve energy efficiency. However, accurate energy forecasting and analytics face persistent challenges, primarily due to the inherent physical constraints of buildings and the diverse, heterogeneous nature of IoT-generated data. In this study, we conduct a comprehensive benchmarking of two publicly available IoT datasets, evaluating the performance of time series foundation models in the context of building energy analytics. Our analysis shows that single-modal models demonstrate significant promise in overcoming the complexities of data variability and physical limitations in buildings, with future work focusing on optimizing multi-modal models for sustainable energy management.


SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition

arXiv.org Artificial Intelligence

In this work, we bridge the gap between wearable sensor technology and personalized AI assistants by enabling Large Language Models (LLMs) to understand time-series tasks like human activity recognition (HAR). Despite the strong reasoning and generalization capabilities of LLMs, leveraging them for sensor data tasks remains largely unexplored. This gap stems from challenges like the lack of semantic context in time-series data, computational limitations, and LLMs' difficulty processing numerical inputs. To address these issues, we introduce SensorLLM, a two-stage framework to unlock LLMs' potential for sensor data tasks. In the Sensor-Language Alignment Stage, we introduce special tokens for each sensor channel and automatically generate trend-descriptive text to align sensor data with textual inputs, enabling SensorLLM to capture numerical changes, channel-specific information, and sensor data of varying lengths-capabilities that existing LLMs typically struggle with, all without the need for human annotations. Next, in Task-Aware Tuning Stage, we refine the model for HAR classification using the frozen LLM and alignment module, achieving performance on par with or surpassing state-of-the-art models. We further demonstrate that SensorLLM evolves into an effective sensor learner, reasoner, and classifier through Sensor-Language Alignment, enabling it to generalize across diverse datasets for HAR tasks. We strongly believe our work lays the stepstone for future time-series and text alignment research, offering a path toward foundation models for sensor data.


XXLTraffic: Expanding and Extremely Long Traffic Dataset for Ultra-Dynamic Forecasting Challenges

arXiv.org Artificial Intelligence

Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the ultra-dynamic nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, the largest available public traffic dataset with the longest timespan and increasing number of sensor nodes over the multiple years observed in the data, curated to support research in ultra-dynamic forecasting. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle ultra-dynamic and extremely long forecasting problems. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.