Xu, Xiangmin
HedgeAgents: A Balanced-aware Multi-agent Financial Trading System
Li, Xiangyu, Zeng, Yawen, Xing, Xiaofen, Xu, Jin, Xu, Xiangmin
As automated trading gains traction in the financial market, algorithmic investment strategies are increasingly prominent. While Large Language Models (LLMs) and Agent-based models exhibit promising potential in real-time market analysis and trading decisions, they still experience a significant -20% loss when confronted with rapid declines or frequent fluctuations, impeding their practical application. Hence, there is an imperative to explore a more robust and resilient framework. This paper introduces an innovative multi-agent system, HedgeAgents, aimed at bolstering system robustness via ``hedging'' strategies. In this well-balanced system, an array of hedging agents has been tailored, where HedgeAgents consist of a central fund manager and multiple hedging experts specializing in various financial asset classes. These agents leverage LLMs' cognitive capabilities to make decisions and coordinate through three types of conferences. Benefiting from the powerful understanding of LLMs, our HedgeAgents attained a 70% annualized return and a 400% total return over a period of 3 years. Moreover, we have observed with delight that HedgeAgents can even formulate investment experience comparable to those of human experts (https://hedgeagents.github.io/).
PsyDT: Using LLMs to Construct the Digital Twin of Psychological Counselor with Personalized Counseling Style for Psychological Counseling
Xie, Haojie, Chen, Yirong, Xing, Xiaofen, Lin, Jingkai, Xu, Xiangmin
Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor's digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor's unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client's questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.
Shared Attention-based Autoencoder with Hierarchical Fusion-based Graph Convolution Network for sEEG SOZ Identification
Yan, Huachao, Guo, Kailing, Song, Shiwei, Dai, Yihai, Wei, Xiaoqiang, Xing, Xiaofen, Xu, Xiangmin
Diagnosing seizure onset zone (SOZ) is a challenge in neurosurgery, where stereoelectroencephalography (sEEG) serves as a critical technique. In sEEG SOZ identification, the existing studies focus solely on the intra-patient representation of epileptic information, overlooking the general features of epilepsy across patients and feature interdependencies between feature elements in each contact site. In order to address the aforementioned challenges, we propose the shared attention-based autoencoder (sATAE). sATAE is trained by sEEG data across all patients, with attention blocks introduced to enhance the representation of interdependencies between feature elements. Considering the spatial diversity of sEEG across patients, we introduce graph-based method for identification SOZ of each patient. However, the current graph-based methods for sEEG SOZ identification rely exclusively on static graphs to model epileptic networks. Inspired by the finding of neuroscience that epileptic network is intricately characterized by the interplay of sophisticated equilibrium between fluctuating and stable states, we design the hierarchical fusion-based graph convolution network (HFGCN) to identify the SOZ. HFGCN integrates the dynamic and static characteristics of epileptic networks through hierarchical weighting across different hierarchies, facilitating a more comprehensive learning of epileptic features and enriching node information for sEEG SOZ identification. Combining sATAE and HFGCN, we perform comprehensive experiments with sATAE-HFGCN on the self-build sEEG dataset, which includes sEEG data from 17 patients with temporal lobe epilepsy. The results show that our method, sATAE-HFGCN, achieves superior performance for identifying the SOZ of each patient, effectively addressing the aforementioned challenges, providing an efficient solution for sEEG-based SOZ identification.
SleepCoT: A Lightweight Personalized Sleep Health Model via Chain-of-Thought Distillation
Zheng, Huimin, Xing, Xiaofeng, Xu, Xiangmin
We present a novel approach to personalized sleep health management using few-shot Chain-of-Thought (CoT) distillation, enabling small-scale language models (> 2B parameters) to rival the performance of large language models (LLMs) in specialized health domains. Our method simultaneously distills problem-solving strategies, long-tail expert knowledge, and personalized recommendation capabilities from larger models into more efficient, compact models. Unlike existing systems, our approach offers three key functionalities: generating personalized sleep health recommendations, supporting user-specific follow-up inquiries, and providing responses to domain-specific knowledge questions. We focus on sleep health due to its measurability via wearable devices and its impact on overall well-being. Our experimental setup, involving GPT-4o for data synthesis, Qwen-max for instruction set creation, and Qwen2.5 1.5B for model distillation, demonstrates significant improvements over baseline small-scale models in penalization, reasoning, and knowledge application. Experiments using 100 simulated sleep reports and 1,000 domain-specific questions shows our model achieves comparable performance to larger models while maintaining efficiency for real-world deployment. This research not only advances AI-driven health management but also provides a novel approach to leveraging LLM capabilities in resource-constrained environments, potentially enhancing the accessibility of personalized healthcare solutions.
Online Multi-level Contrastive Representation Distillation for Cross-Subject fNIRS Emotion Recognition
Lai, Zhili, Qing, Chunmei, Tan, Junpeng, Luo, Wanxiang, Xu, Xiangmin
Utilizing functional near-infrared spectroscopy (fNIRS) signals for emotion recognition is a significant advancement in understanding human emotions. However, due to the lack of artificial intelligence data and algorithms in this field, current research faces the following challenges: 1) The portable wearable devices have higher requirements for lightweight models; 2) The objective differences of physiology and psychology among different subjects aggravate the difficulty of emotion recognition. To address these challenges, we propose a novel cross-subject fNIRS emotion recognition method, called the Online Multi-level Contrastive Representation Distillation framework (OMCRD). Specifically, OMCRD is a framework designed for mutual learning among multiple lightweight student networks. It utilizes multi-level fNIRS feature extractor for each sub-network and conducts multi-view sentimental mining using physiological signals. The proposed Inter-Subject Interaction Contrastive Representation (IS-ICR) facilitates knowledge transfer for interactions between student models, enhancing cross-subject emotion recognition performance. The optimal student network can be selected and deployed on a wearable device. Some experimental results demonstrate that OMCRD achieves state-of-the-art results in emotional perception and affective imagery tasks.
VideoCoT: A Video Chain-of-Thought Dataset with Active Annotation Tool
Wang, Yan, Zeng, Yawen, Zheng, Jingsheng, Xing, Xiaofen, Xu, Jin, Xu, Xiangmin
Multimodal large language models (MLLMs) are flourishing, but mainly focus on images with less attention than videos, especially in sub-fields such as prompt engineering, video chain-of-thought (CoT), and instruction tuning on videos. Therefore, we try to explore the collection of CoT datasets in videos to lead to video OpenQA and improve the reasoning ability of MLLMs. Unfortunately, making such video CoT datasets is not an easy task. Given that human annotation is too cumbersome and expensive, while machine-generated is not reliable due to the hallucination issue, we develop an automatic annotation tool that combines machine and human experts, under the active learning paradigm. Active learning is an interactive strategy between the model and human experts, in this way, the workload of human labeling can be reduced and the quality of the dataset can be guaranteed. With the help of the automatic annotation tool, we strive to contribute three datasets, namely VideoCoT, TopicQA, TopicCoT. Furthermore, we propose a simple but effective benchmark based on the collected datasets, which exploits CoT to maximize the complex reasoning capabilities of MLLMs. Extensive experiments demonstrate the effectiveness our solution.
Texture-Preserving Diffusion Models for High-Fidelity Virtual Try-On
Yang, Xu, Ding, Changxing, Hong, Zhibin, Huang, Junhao, Tao, Jin, Xu, Xiangmin
Image-based virtual try-on is an increasingly important task for online shopping. It aims to synthesize images of a specific person wearing a specified garment. Diffusion model-based approaches have recently become popular, as they are excellent at image synthesis tasks. However, these approaches usually employ additional image encoders and rely on the cross-attention mechanism for texture transfer from the garment to the person image, which affects the try-on's efficiency and fidelity. To address these issues, we propose an Texture-Preserving Diffusion (TPD) model for virtual try-on, which enhances the fidelity of the results and introduces no additional image encoders. Accordingly, we make contributions from two aspects. First, we propose to concatenate the masked person and reference garment images along the spatial dimension and utilize the resulting image as the input for the diffusion model's denoising UNet. This enables the original self-attention layers contained in the diffusion model to achieve efficient and accurate texture transfer. Second, we propose a novel diffusion-based method that predicts a precise inpainting mask based on the person and reference garment images, further enhancing the reliability of the try-on results. In addition, we integrate mask prediction and image synthesis into a single compact model. The experimental results show that our approach can be applied to various try-on tasks, e.g., garment-to-person and person-to-person try-ons, and significantly outperforms state-of-the-art methods on popular VITON, VITON-HD databases.
Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset
Avogaro, Andrea, Toaiari, Andrea, Cunico, Federico, Xu, Xiangmin, Dafas, Haralambos, Vinciarelli, Alessandro, Li, Emma, Cristani, Marco
We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot, the quadruped robot manufactured by Boston Dynamics. The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors. These make 3D body pose analysis challenging because being close to the ground captures humans only partially. The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users. The Corpus contains not only the recordings of the built-in stereo cameras of Spot, but also those of a 6-camera OptiTrack system (all recordings are synchronized). This leads to ground-truth skeletal representations with a precision lower than a millimeter. In addition, the Corpus includes reproducible benchmarks on 3D Human Pose Estimation, Human Pose Forecasting, and Collision Prediction, all based on publicly available baseline approaches. This enables future HARPER users to rigorously compare their results with those we provide in this work.
BianQue: Balancing the Questioning and Suggestion Ability of Health LLMs with Multi-turn Health Conversations Polished by ChatGPT
Chen, Yirong, Wang, Zhenyu, Xing, Xiaofen, zheng, huimin, Xu, Zhipei, Fang, Kai, Wang, Junhong, Li, Sihang, Wu, Jieling, Liu, Qi, Xu, Xiangmin
Large language models (LLMs) have performed well in providing general and extensive health suggestions in single-turn conversations, exemplified by systems such as ChatGPT, ChatGLM, ChatDoctor, DoctorGLM, and etc. However, the limited information provided by users during single turn results in inadequate personalization and targeting of the generated suggestions, which requires users to independently select the useful part. It is mainly caused by the missing ability to engage in multi-turn questioning. In real-world medical consultations, doctors usually employ a series of iterative inquiries to comprehend the patient's condition thoroughly, enabling them to provide effective and personalized suggestions subsequently, which can be defined as chain of questioning (CoQ) for LLMs. To improve the CoQ of LLMs, we propose BianQue, a ChatGLM-based LLM finetuned with the self-constructed health conversation dataset BianQueCorpus that is consist of multiple turns of questioning and health suggestions polished by ChatGPT. Experimental results demonstrate that the proposed BianQue can simultaneously balance the capabilities of both questioning and health suggestions, which will help promote the research and application of LLMs in the field of proactive health.
SoulChat: Improving LLMs' Empathy, Listening, and Comfort Abilities through Fine-tuning with Multi-turn Empathy Conversations
Chen, Yirong, Xing, Xiaofen, Lin, Jingkai, Zheng, Huimin, Wang, Zhenyu, Liu, Qi, Xu, Xiangmin
Large language models (LLMs) have been widely applied in various fields due to their excellent capability for memorizing knowledge and chain of thought (CoT). When these language models are applied in the field of psychological counseling, they often rush to provide universal advice. However, when users seek psychological support, they need to gain empathy, trust, understanding and comfort, rather than just reasonable advice. To this end, we constructed a multi-turn empathetic conversation dataset of more than 2 million samples, in which the input is the multi-turn conversation context, and the target is empathetic responses that cover expressions such as questioning, comfort, recognition, listening, trust, emotional support, etc. Experiments have shown that the empathy ability of LLMs can be significantly enhanced when finetuning by using multi-turn dialogue history and responses that are closer to the expression of a psychological consultant.