Goto

Collaborating Authors

 Xu, Qingyao


ChatBEV: A Visual Language Model that Understands BEV Maps

arXiv.org Artificial Intelligence

Traffic scene understanding is essential for intelligent transportation systems and autonomous driving, ensuring safe and efficient vehicle operation. While recent advancements in VLMs have shown promise for holistic scene understanding, the application of VLMs to traffic scenarios, particularly using BEV maps, remains under explored. Existing methods often suffer from limited task design and narrow data amount, hindering comprehensive scene understanding. To address these challenges, we introduce ChatBEV-QA, a novel BEV VQA benchmark contains over 137k questions, designed to encompass a wide range of scene understanding tasks, including global scene understanding, vehicle-lane interactions, and vehicle-vehicle interactions. This benchmark is constructed using an novel data collection pipeline that generates scalable and informative VQA data for BEV maps. We further fine-tune a specialized vision-language model ChatBEV, enabling it to interpret diverse question prompts and extract relevant context-aware information from BEV maps. Additionally, we propose a language-driven traffic scene generation pipeline, where ChatBEV facilitates map understanding and text-aligned navigation guidance, significantly enhancing the generation of realistic and consistent traffic scenarios. The dataset, code and the fine-tuned model will be released.


BloomScene: Lightweight Structured 3D Gaussian Splatting for Crossmodal Scene Generation

arXiv.org Artificial Intelligence

With the widespread use of virtual reality applications, 3D scene generation has become a new challenging research frontier. 3D scenes have highly complex structures and need to ensure that the output is dense, coherent, and contains all necessary structures. Many current 3D scene generation methods rely on pre-trained text-to-image diffusion models and monocular depth estimators. However, the generated scenes occupy large amounts of storage space and often lack effective regularisation methods, leading to geometric distortions. To this end, we propose BloomScene, a lightweight structured 3D Gaussian splatting for crossmodal scene generation, which creates diverse and high-quality 3D scenes from text or image inputs. Specifically, a crossmodal progressive scene generation framework is proposed to generate coherent scenes utilizing incremental point cloud reconstruction and 3D Gaussian splatting. Additionally, we propose a hierarchical depth prior-based regularization mechanism that utilizes multi-level constraints on depth accuracy and smoothness to enhance the realism and continuity of the generated scenes. Ultimately, we propose a structured context-guided compression mechanism that exploits structured hash grids to model the context of unorganized anchor attributes, which significantly eliminates structural redundancy and reduces storage overhead. Comprehensive experiments across multiple scenes demonstrate the significant potential and advantages of our framework compared with several baselines.


Toward Robust Incomplete Multimodal Sentiment Analysis via Hierarchical Representation Learning

arXiv.org Artificial Intelligence

Multimodal Sentiment Analysis (MSA) is an important research area that aims to understand and recognize human sentiment through multiple modalities. The complementary information provided by multimodal fusion promotes better sentiment analysis compared to utilizing only a single modality. Nevertheless, in real-world applications, many unavoidable factors may lead to situations of uncertain modality missing, thus hindering the effectiveness of multimodal modeling and degrading the model's performance. To this end, we propose a Hierarchical Representation Learning Framework (HRLF) for the MSA task under uncertain missing modalities. Specifically, we propose a fine-grained representation factorization module that sufficiently extracts valuable sentiment information by factorizing modality into sentiment-relevant and modality-specific representations through crossmodal translation and sentiment semantic reconstruction. Moreover, a hierarchical mutual information maximization mechanism is introduced to incrementally maximize the mutual information between multi-scale representations to align and reconstruct the high-level semantics in the representations. Ultimately, we propose a hierarchical adversarial learning mechanism that further aligns and adapts the latent distribution of sentiment-relevant representations to produce robust joint multimodal representations. Comprehensive experiments on three datasets demonstrate that HRLF significantly improves MSA performance under uncertain modality missing cases.


MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration

arXiv.org Artificial Intelligence

Large Language Model (LLM)-driven interactive systems currently show potential promise in healthcare domains. Despite their remarkable capabilities, LLMs typically lack personalized recommendations and diagnosis analysis in sophisticated medical applications, causing hallucinations and performance bottlenecks. To address these challenges, this paper proposes MedAide, an LLM-based omni medical multi-agent collaboration framework for specialized healthcare services. Specifically, MedAide first performs query rewriting through retrieval-augmented generation to accomplish accurate medical intent understanding. Immediately, we devise a contextual encoder to obtain intent prototype embeddings, which are used to recognize fine-grained intents by similarity matching. According to the intent relevance, the activated agents collaborate effectively to provide integrated decision analysis. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.


PediatricsGPT: Large Language Models as Chinese Medical Assistants for Pediatric Applications

arXiv.org Artificial Intelligence

Developing intelligent pediatric consultation systems offers promising prospects for improving diagnostic efficiency, especially in China, where healthcare resources are scarce. Despite recent advances in Large Language Models (LLMs) for Chinese medicine, their performance is sub-optimal in pediatric applications due to inadequate instruction data and vulnerable training procedures. To address the above issues, this paper builds PedCorpus, a high-quality dataset of over 300,000 multi-task instructions from pediatric textbooks, guidelines, and knowledge graph resources to fulfil diverse diagnostic demands. Upon well-designed PedCorpus, we propose PediatricsGPT, the first Chinese pediatric LLM assistant built on a systematic and robust training pipeline. In the continuous pre-training phase, we introduce a hybrid instruction pre-training mechanism to mitigate the internal-injected knowledge inconsistency of LLMs for medical domain adaptation. Immediately, the full-parameter Supervised Fine-Tuning (SFT) is utilized to incorporate the general medical knowledge schema into the models. After that, we devise a direct following preference optimization to enhance the generation of pediatrician-like humanistic responses. In the parameter-efficient secondary SFT phase, a mixture of universal-specific experts strategy is presented to resolve the competency conflict between medical generalist and pediatric expertise mastery. Extensive results based on the metrics, GPT-4, and doctor evaluations on distinct doctor downstream tasks show that PediatricsGPT consistently outperforms previous Chinese medical LLMs. Our model and dataset will be open-source for community development.


Language-Driven Interactive Traffic Trajectory Generation

arXiv.org Artificial Intelligence

Realistic trajectory generation with natural language control is pivotal for advancing autonomous vehicle technology. However, previous methods focus on individual traffic participant trajectory generation, thus failing to account for the complexity of interactive traffic dynamics. In this work, we propose InteractTraj, the first language-driven traffic trajectory generator that can generate interactive traffic trajectories. InteractTraj interprets abstract trajectory descriptions into concrete formatted interaction-aware numerical codes and learns a mapping between these formatted codes and the final interactive trajectories. To interpret language descriptions, we propose a language-to-code encoder with a novel interaction-aware encoding strategy. To produce interactive traffic trajectories, we propose a code-to-trajectory decoder with interaction-aware feature aggregation that synergizes vehicle interactions with the environmental map and the vehicle moves. Extensive experiments show our method demonstrates superior performance over previous SoTA methods, offering a more realistic generation of interactive traffic trajectories with high controllability via diverse natural language commands. Our code is available at https://github.com/X1a-jk/InteractTraj.git