Goto

Collaborating Authors

 Xu, Jun


UOEP: User-Oriented Exploration Policy for Enhancing Long-Term User Experiences in Recommender Systems

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has gained traction for enhancing user long-term experiences in recommender systems by effectively exploring users' interests. However, modern recommender systems exhibit distinct user behavioral patterns among tens of millions of items, which increases the difficulty of exploration. For example, user behaviors with different activity levels require varying intensity of exploration, while previous studies often overlook this aspect and apply a uniform exploration strategy to all users, which ultimately hurts user experiences in the long run. To address these challenges, we propose User-Oriented Exploration Policy (UOEP), a novel approach facilitating fine-grained exploration among user groups. We first construct a distributional critic which allows policy optimization under varying quantile levels of cumulative reward feedbacks from users, representing user groups with varying activity levels. Guided by this critic, we devise a population of distinct actors aimed at effective and fine-grained exploration within its respective user group. To simultaneously enhance diversity and stability during the exploration process, we further introduce a population-level diversity regularization term and a supervision module. Experimental results on public recommendation datasets demonstrate that our approach outperforms all other baselines in terms of long-term performance, validating its user-oriented exploration effectiveness. Meanwhile, further analyses reveal our approach's benefits of improved performance for low-activity users as well as increased fairness among users.


LLMs may Dominate Information Access: Neural Retrievers are Biased Towards LLM-Generated Texts

arXiv.org Artificial Intelligence

Recently, the emergence of large language models (LLMs) has revolutionized the paradigm of information retrieval (IR) applications, especially in web search. With their remarkable capabilities in generating human-like texts, LLMs have created enormous texts on the Internet. As a result, IR systems in the LLMs era are facing a new challenge: the indexed documents now are not only written by human beings but also automatically generated by the LLMs. How these LLM-generated documents influence the IR systems is a pressing and still unexplored question. In this work, we conduct a quantitative evaluation of different IR models in scenarios where both human-written and LLM-generated texts are involved. Surprisingly, our findings indicate that neural retrieval models tend to rank LLM-generated documents higher. We refer to this category of biases in neural retrieval models towards the LLM-generated text as the \textbf{source bias}. Moreover, we discover that this bias is not confined to the first-stage neural retrievers, but extends to the second-stage neural re-rankers. Then, we provide an in-depth analysis from the perspective of text compression and observe that neural models can better understand the semantic information of LLM-generated text, which is further substantiated by our theoretical analysis. To mitigate the source bias, we also propose a plug-and-play debiased constraint for the optimization objective, and experimental results show the effectiveness. Finally, we discuss the potential severe concerns stemming from the observed source bias and hope our findings can serve as a critical wake-up call to the IR community and beyond. To facilitate future explorations of IR in the LLM era, the constructed two new benchmarks and codes will later be available at \url{https://github.com/KID-22/LLM4IR-Bias}.


AI-Generated Images Introduce Invisible Relevance Bias to Text-Image Retrieval

arXiv.org Artificial Intelligence

With the advancement of generation models, AI-generated content (AIGC) is becoming more realistic, flooding the Internet. A recent study suggests that this phenomenon causes source bias in text retrieval for web search. Specifically, neural retrieval models tend to rank generated texts higher than human-written texts. In this paper, we extend the study of this bias to cross-modal retrieval. Firstly, we successfully construct a suitable benchmark to explore the existence of the bias. Subsequent extensive experiments on this benchmark reveal that AI-generated images introduce an invisible relevance bias to text-image retrieval models. Specifically, our experiments show that text-image retrieval models tend to rank the AI-generated images higher than the real images, even though the AI-generated images do not exhibit more visually relevant features to the query than real images. This invisible relevance bias is prevalent across retrieval models with varying training data and architectures. Furthermore, our subsequent exploration reveals that the inclusion of AI-generated images in the training data of the retrieval models exacerbates the invisible relevance bias. The above phenomenon triggers a vicious cycle, which makes the invisible relevance bias become more and more serious. To elucidate the potential causes of invisible relevance and address the aforementioned issues, we introduce an effective training method aimed at alleviating the invisible relevance bias. Subsequently, we apply our proposed debiasing method to retroactively identify the causes of invisible relevance, revealing that the AI-generated images induce the image encoder to embed additional information into their representation. This information exhibits a certain consistency across generated images with different semantics and can make the retriever estimate a higher relevance score.


Gemini: A Family of Highly Capable Multimodal Models

arXiv.org Artificial Intelligence

This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model advances the state of the art in 30 of 32 of these benchmarks - notably being the first model to achieve human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use cases and we discuss our approach toward deploying them responsibly to users.


Entity-Aspect-Opinion-Sentiment Quadruple Extraction for Fine-grained Sentiment Analysis

arXiv.org Artificial Intelligence

Product reviews often contain a large number of implicit aspects and object-attribute co-existence cases. Unfortunately, many existing studies in Aspect-Based Sentiment Analysis (ABSA) have overlooked this issue, which can make it difficult to extract opinions comprehensively and fairly. In this paper, we propose a new task called Entity-Aspect-Opinion-Sentiment Quadruple Extraction (EASQE), which aims to hierarchically decompose aspect terms into entities and aspects to avoid information loss, non-exclusive annotations, and opinion misunderstandings in ABSA tasks. To facilitate research in this new task, we have constructed four datasets (Res14-EASQE, Res15-EASQE, Res16-EASQE, and Lap14-EASQE) based on the SemEval Restaurant and Laptop datasets. We have also proposed a novel two-stage sequence-tagging based Trigger-Opinion framework as the baseline for the EASQE task. Empirical evaluations show that our Trigger-Opinion framework can generate satisfactory EASQE results and can also be applied to other ABSA tasks, significantly outperforming state-of-the-art methods. We have made the four datasets and source code of Trigger-Opinion publicly available to facilitate further research in this area.


Reward Imputation with Sketching for Contextual Batched Bandits

arXiv.org Artificial Intelligence

Contextual batched bandit (CBB) is a setting where a batch of rewards is observed from the environment at the end of each episode, but the rewards of the non-executed actions are unobserved, resulting in partial-information feedback. Existing approaches for CBB often ignore the rewards of the non-executed actions, leading to underutilization of feedback information. In this paper, we propose an efficient approach called Sketched Policy Updating with Imputed Rewards (SPUIR) that completes the unobserved rewards using sketching, which approximates the full-information feedbacks. We formulate reward imputation as an imputation regularized ridge regression problem that captures the feedback mechanisms of both executed and non-executed actions. To reduce time complexity, we solve the regression problem using randomized sketching. We prove that our approach achieves an instantaneous regret with controllable bias and smaller variance than approaches without reward imputation. Furthermore, our approach enjoys a sublinear regret bound against the optimal policy. We also present two extensions, a rate-scheduled version and a version for nonlinear rewards, making our approach more practical. Experimental results show that SPUIR outperforms state-of-the-art baselines on synthetic, public benchmark, and real-world datasets.


When Large Language Model based Agent Meets User Behavior Analysis: A Novel User Simulation Paradigm

arXiv.org Artificial Intelligence

User behavior analysis is crucial in human-centered AI applications. In this field, the collection of sufficient and high-quality user behavior data has always been a fundamental yet challenging problem. An intuitive idea to address this problem is automatically simulating the user behaviors. However, due to the subjective and complex nature of human cognitive processes, reliably simulating the user behavior is difficult. Recently, large language models (LLM) have obtained remarkable successes, showing great potential to achieve human-like intelligence. We argue that these models present significant opportunities for reliable user simulation, and have the potential to revolutionize traditional study paradigms in user behavior analysis. In this paper, we take recommender system as an example to explore the potential of using LLM for user simulation. Specifically, we regard each user as an LLM-based autonomous agent, and let different agents freely communicate, behave and evolve in a virtual simulator called RecAgent. For comprehensively simulation, we not only consider the behaviors within the recommender system (\emph{e.g.}, item browsing and clicking), but also accounts for external influential factors, such as, friend chatting and social advertisement. Our simulator contains at most 1000 agents, and each agent is composed of a profiling module, a memory module and an action module, enabling it to behave consistently, reasonably and reliably. In addition, to more flexibly operate our simulator, we also design two global functions including real-human playing and system intervention. To evaluate the effectiveness of our simulator, we conduct extensive experiments from both agent and system perspectives. In order to advance this direction, we have released our project at {https://github.com/RUC-GSAI/YuLan-Rec}.


HyperBandit: Contextual Bandit with Hypernewtork for Time-Varying User Preferences in Streaming Recommendation

arXiv.org Artificial Intelligence

In real-world streaming recommender systems, user preferences often dynamically change over time (e.g., a user may have different preferences during weekdays and weekends). Existing bandit-based streaming recommendation models only consider time as a timestamp, without explicitly modeling the relationship between time variables and time-varying user preferences. This leads to recommendation models that cannot quickly adapt to dynamic scenarios. To address this issue, we propose a contextual bandit approach using hypernetwork, called HyperBandit, which takes time features as input and dynamically adjusts the recommendation model for time-varying user preferences. Specifically, HyperBandit maintains a neural network capable of generating the parameters for estimating time-varying rewards, taking into account the correlation between time features and user preferences. Using the estimated time-varying rewards, a bandit policy is employed to make online recommendations by learning the latent item contexts. To meet the real-time requirements in streaming recommendation scenarios, we have verified the existence of a low-rank structure in the parameter matrix and utilize low-rank factorization for efficient training. Theoretically, we demonstrate a sublinear regret upper bound against the best policy. Extensive experiments on real-world datasets show that the proposed HyperBandit consistently outperforms the state-of-the-art baselines in terms of accumulated rewards.


Information Retrieval Meets Large Language Models: A Strategic Report from Chinese IR Community

arXiv.org Artificial Intelligence

The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.


When Search Meets Recommendation: Learning Disentangled Search Representation for Recommendation

arXiv.org Artificial Intelligence

Modern online service providers such as online shopping platforms often provide both search and recommendation (S&R) services to meet different user needs. Rarely has there been any effective means of incorporating user behavior data from both S&R services. Most existing approaches either simply treat S&R behaviors separately, or jointly optimize them by aggregating data from both services, ignoring the fact that user intents in S&R can be distinctively different. In our paper, we propose a Search-Enhanced framework for the Sequential Recommendation (SESRec) that leverages users' search interests for recommendation, by disentangling similar and dissimilar representations within S&R behaviors. Specifically, SESRec first aligns query and item embeddings based on users' query-item interactions for the computations of their similarities. Two transformer encoders are used to learn the contextual representations of S&R behaviors independently. Then a contrastive learning task is designed to supervise the disentanglement of similar and dissimilar representations from behavior sequences of S&R. Finally, we extract user interests by the attention mechanism from three perspectives, i.e., the contextual representations, the two separated behaviors containing similar and dissimilar interests. Extensive experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models. Empirical studies further validate that SESRec successfully disentangle similar and dissimilar user interests from their S&R behaviors.