Goto

Collaborating Authors

 Xu, Jun


Do Not Wait: Learning Re-Ranking Model Without User Feedback At Serving Time in E-Commerce

arXiv.org Artificial Intelligence

Recommender systems have been widely used in e-commerce, and re-ranking models are playing an increasingly significant role in the domain, which leverages the inter-item influence and determines the final recommendation lists. Online learning methods keep updating a deployed model with the latest available samples to capture the shifting of the underlying data distribution in e-commerce. However, they depend on the availability of real user feedback, which may be delayed by hours or even days, such as item purchases, leading to a lag in model enhancement. In this paper, we propose a novel extension of online learning methods for re-ranking modeling, which we term LAST, an acronym for Learning At Serving Time. It circumvents the requirement of user feedback by using a surrogate model to provide the instructional signal needed to steer model improvement. Upon receiving an online request, LAST finds and applies a model modification on the fly before generating a recommendation result for the request. The modification is request-specific and transient. It means the modification is tailored to and only to the current request to capture the specific context of the request. After a request, the modification is discarded, which helps to prevent error propagation and stabilizes the online learning procedure since the predictions of the surrogate model may be inaccurate. Most importantly, as a complement to feedback-based online learning methods, LAST can be seamlessly integrated into existing online learning systems to create a more adaptive and responsive recommendation experience. Comprehensive experiments, both offline and online, affirm that LAST outperforms state-of-the-art re-ranking models.


Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context

arXiv.org Artificial Intelligence

In this report, we introduce the Gemini 1.5 family of models, representing the next generation of highly compute-efficient multimodal models capable of recalling and reasoning over fine-grained information from millions of tokens of context, including multiple long documents and hours of video and audio. The family includes two new models: (1) an updated Gemini 1.5 Pro, which exceeds the February version on the great majority of capabilities and benchmarks; (2) Gemini 1.5 Flash, a more lightweight variant designed for efficiency with minimal regression in quality. Gemini 1.5 models achieve near-perfect recall on long-context retrieval tasks across modalities, improve the state-of-the-art in long-document QA, long-video QA and long-context ASR, and match or surpass Gemini 1.0 Ultra's state-of-the-art performance across a broad set of benchmarks. Studying the limits of Gemini 1.5's long-context ability, we find continued improvement in next-token prediction and near-perfect retrieval (>99%) up to at least 10M tokens, a generational leap over existing models such as Claude 3.0 (200k) and GPT-4 Turbo (128k). Finally, we highlight real-world use cases, such as Gemini 1.5 collaborating with professionals on completing their tasks achieving 26 to 75% time savings across 10 different job categories, as well as surprising new capabilities of large language models at the frontier; when given a grammar manual for Kalamang, a language with fewer than 200 speakers worldwide, the model learns to translate English to Kalamang at a similar level to a person who learned from the same content.


Efficient Knowledge Infusion via KG-LLM Alignment

arXiv.org Artificial Intelligence

To tackle the problem of domain-specific knowledge scarcity within large language models (LLMs), knowledge graph-retrievalaugmented method has been proven to be an effective and efficient technique for knowledge infusion. However, existing approaches face two primary challenges: knowledge mismatch between public available knowledge graphs and the specific domain of the task at hand, and poor information compliance of LLMs with knowledge graphs. In this paper, we leverage a small set of labeled samples and a large-scale corpus to efficiently construct domain-specific knowledge graphs by an LLM, addressing the issue of knowledge mismatch. Additionally, we propose a three-stage KG-LLM alignment strategyto enhance the LLM's capability to utilize information from knowledge graphs. We conduct experiments with a limited-sample setting on two biomedical question-answering datasets, and the results demonstrate that our approach outperforms existing baselines.


Tool Learning with Large Language Models: A Survey

arXiv.org Artificial Intelligence

Recently, tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems. Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization, posing barriers to entry for newcomers. This gap motivates us to conduct a comprehensive survey of existing works on tool learning with LLMs. In this survey, we focus on reviewing existing literature from the two primary aspects (1) why tool learning is beneficial and (2) how tool learning is implemented, enabling a comprehensive understanding of tool learning with LLMs. We first explore the "why" by reviewing both the benefits of tool integration and the inherent benefits of the tool learning paradigm from six specific aspects. In terms of "how", we systematically review the literature according to a taxonomy of four key stages in the tool learning workflow: task planning, tool selection, tool calling, and response generation. Additionally, we provide a detailed summary of existing benchmarks and evaluation methods, categorizing them according to their relevance to different stages. Finally, we discuss current challenges and outline potential future directions, aiming to inspire both researchers and industrial developers to further explore this emerging and promising area. We also maintain a GitHub repository to continually keep track of the relevant papers and resources in this rising area at \url{https://github.com/quchangle1/LLM-Tool-Survey}.


Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop

arXiv.org Artificial Intelligence

Recently, researchers have uncovered that neural retrieval models prefer AI-generated content (AIGC), called source bias. Compared to active search behavior, recommendation represents another important means of information acquisition, where users are more prone to source bias. Furthermore, delving into the recommendation scenario, as AIGC becomes integrated within the feedback loop involving users, data, and the recommender system, it progressively contaminates the candidate items, the user interaction history, and ultimately, the data used to train the recommendation models. How and to what extent the source bias affects the neural recommendation models within feedback loop remains unknown. In this study, we extend the investigation of source bias into the realm of recommender systems, specifically examining its impact across different phases of the feedback loop. We conceptualize the progression of AIGC integration into the recommendation content ecosystem in three distinct phases-HGC dominate, HGC-AIGC coexist, and AIGC dominance-each representing past, present, and future states, respectively. Through extensive experiments across three datasets from diverse domains, we demonstrate the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification throughout the feedback loop. This trend risks creating a recommender ecosystem with limited information source, such as AIGC, being disproportionately recommended. To counteract this bias and prevent its escalation in the feedback loop, we introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC. Our experimental results validate the effectiveness of the proposed debiasing method, confirming its potential to disrupt the feedback loop.


ReCODE: Modeling Repeat Consumption with Neural ODE

arXiv.org Artificial Intelligence

In real-world recommender systems, such as in the music domain, repeat consumption is a common phenomenon where users frequently listen to a small set of preferred songs or artists repeatedly. The key point of modeling repeat consumption is capturing the temporal patterns between a user's repeated consumption of the items. Existing studies often rely on heuristic assumptions, such as assuming an exponential distribution for the temporal gaps. However, due to the high complexity of real-world recommender systems, these pre-defined distributions may fail to capture the intricate dynamic user consumption patterns, leading to sub-optimal performance. Drawing inspiration from the flexibility of neural ordinary differential equations (ODE) in capturing the dynamics of complex systems, we propose ReCODE, a novel model-agnostic framework that utilizes neural ODE to model repeat consumption. ReCODE comprises two essential components: a user's static preference prediction module and the modeling of user dynamic repeat intention. By considering both immediate choices and historical consumption patterns, ReCODE offers comprehensive modeling of user preferences in the target context. Moreover, ReCODE seamlessly integrates with various existing recommendation models, including collaborative-based and sequential-based models, making it easily applicable in different scenarios. Experimental results on two real-world datasets consistently demonstrate that ReCODE significantly improves the performance of base models and outperforms other baseline methods.


COLT: Towards Completeness-Oriented Tool Retrieval for Large Language Models

arXiv.org Artificial Intelligence

Recently, the integration of external tools with Large Language Models (LLMs) has emerged as a promising approach to overcome the inherent constraints of their pre-training data. However, realworld applications often involve a diverse range of tools, making it infeasible to incorporate all tools directly into LLMs due to constraints on input length and response time. Therefore, to fully exploit the potential of tool-augmented LLMs, it is crucial to develop an effective tool retrieval system. Existing tool retrieval methods techniques mainly rely on semantic matching between user queries and tool descriptions, which often results in the selection of redundant tools. As a result, these methods fail to provide a complete set of diverse tools necessary for addressing the multifaceted problems encountered by LLMs. In this paper, we propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools. Specifically, we first fine-tune the PLM-based retrieval models to capture the semantic relationships between queries and tools in the semantic learning stage. Subsequently, we construct three bipartite graphs among queries, scenes, and tools and introduce a dual-view graph collaborative learning framework to capture the intricate collaborative relationships among tools during the collaborative learning stage. Extensive experiments on both the open benchmark and the newly introduced ToolLens dataset show that COLT achieves superior performance. Notably, the performance of BERT-mini (11M) with our proposed model framework outperforms BERT-large (340M), which has 30 times more parameters. Additionally, we plan to publicly release the ToolLens dataset to support further research in tool retrieval.


Fennec: Fine-grained Language Model Evaluation and Correction Extended through Branching and Bridging

arXiv.org Artificial Intelligence

The rapid advancement of large language models has given rise to a plethora of applications across a myriad of real-world tasks, mainly centered on aligning with human intent. However, the complexities inherent in human intent necessitate a dependence on labor-intensive and time-consuming human evaluation. To alleviate this constraint, we delve into the paradigm of employing open-source large language models as evaluators, aligning with the prevailing trend of utilizing GPT-4. Particularly, we present a step-by-step evaluation framework: \textbf{Fennec}, capable of \textbf{F}ine-grained \textbf{E}valuatio\textbf{N} and correctio\textbf{N} \textbf{E}xtended through bran\textbf{C}hing and bridging. Specifically, the branching operation dissects the evaluation task into various dimensions and granularities, thereby alleviating the challenges associated with evaluation. Concurrently, the bridging operation amalgamates diverse training datasets, augmenting the variety of evaluation tasks. In experimental trials, our 7B model consistently outperforms open-source larger-scale evaluation models across various widely adopted benchmarks in terms of both \textit{Agreement} and \textit{Consistency}, closely approaching the capabilities of GPT-4. We employ the fine-grained correction capabilities induced by the evaluation model to refine multiple model responses, and the results show that the refinement elevates the quality of responses, leading to an improvement of 1-2 points on the MT-Bench. Our code is available at Github\footnote{\url{https://github.com/dropreg/Fennec}}.


Effective In-Context Example Selection through Data Compression

arXiv.org Artificial Intelligence

In-context learning has been extensively validated in large language models. However, the mechanism and selection strategy for in-context example selection, which is a crucial ingredient in this approach, lacks systematic and in-depth research. In this paper, we propose a data compression approach to the selection of in-context examples. We introduce a two-stage method that can effectively choose relevant examples and retain sufficient information about the training dataset within the in-context examples. Our method shows a significant improvement of an average of 5.90% across five different real-world datasets using four language models.


Masked Latent Transformer with the Random Masking Ratio to Advance the Diagnosis of Dental Fluorosis

arXiv.org Artificial Intelligence

Dental fluorosis is a chronic disease caused by long-term overconsumption of fluoride, which leads to changes in the appearance of tooth enamel. It is an important basis for early non-invasive diagnosis of endemic fluorosis. However, even dental professionals may not be able to accurately distinguish dental fluorosis and its severity based on tooth images. Currently, there is still a gap in research on applying deep learning to diagnosing dental fluorosis. Therefore, we construct the first open-source dental fluorosis image dataset (DFID), laying the foundation for deep learning research in this field. To advance the diagnosis of dental fluorosis, we propose a pioneering deep learning model called masked latent transformer with the random masking ratio (MLTrMR). MLTrMR introduces a mask latent modeling scheme based on Vision Transformer to enhance contextual learning of dental fluorosis lesion characteristics. Consisting of a latent embedder, encoder, and decoder, MLTrMR employs the latent embedder to extract latent tokens from the original image, whereas the encoder and decoder comprising the latent transformer (LT) block are used to process unmasked tokens and predict masked tokens, respectively. To mitigate the lack of inductive bias in Vision Transformer, which may result in performance degradation, the LT block introduces latent tokens to enhance the learning capacity of latent lesion features. Furthermore, we design an auxiliary loss function to constrain the parameter update direction of the model. MLTrMR achieves 80.19% accuracy, 75.79% F1, and 81.28% quadratic weighted kappa on DFID, making it state-of-the-art (SOTA).