Xu, Jianliang
AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model
Zhang, Sen, Ye, Qingqing, Hu, Haibo, Xu, Jianliang
--The skip-gram model (SGM), which employs a neural network to generate node vectors, serves as the basis for numerous popular graph embedding techniques. However, since the training datasets contain sensitive linkage information, the parameters of a released SGM may encode private information and pose significant privacy risks. Differential privacy (DP) is a rigorous standard for protecting individual privacy in data analysis. Nevertheless, when applying differential privacy to skip-gram in graphs, it becomes highly challenging due to the complex link relationships, which potentially result in high sensitivity and necessitate substantial noise injection. T o tackle this challenge, we present AdvSGM, a differentially private skip-gram for graphs via adversarial training. Our core idea is to leverage adversarial training to privatize skip-gram while improving its utility. T owards this end, we develop a novel adversarial training module by devising two optimizable noise terms that correspond to the parameters of a skip-gram. By fine-tuning the weights between modules within AdvSGM, we can achieve differentially private gradient updates without additional noise injection. Extensive experimental results on six real-world graph datasets show that AdvSGM preserves high data utility across different downstream tasks. Graph embedding, which has attracted increasing research attention, represents nodes by low-dimensional vectors while preserving the inherent properties and structures of the graph. In this way, well-studied machine learning algorithms can be easily applied for further mining tasks like clustering, classification, and prediction. Skip-gram models (SGMs) are a popular class of graph embedding models thanks to their simplicity and effectiveness, including DeepWalk [1], LINE [2], and node2vec [3]. However, SGMs, which capture not only general data characteristics but also specific details about individual data, are vulnerable to adversarial attacks, particularly user-linkage attacks [4] that exploit the linkage information between nodes to infer whether an individual is present in the training dataset. Therefore, node embeddings need to be sanitized with privacy guarantees before they can be released to the public. Differential privacy (DP) [5] is a well studied statistical privacy model recognized for its rigorous mathematical underpinnings. In this paper, we study the problem of achieving privacy-preserving skip-gram for graphs under differential privacy.
Adaptive Local Clustering over Attributed Graphs
Zheng, Haoran, Yang, Renchi, Xu, Jianliang
Given a graph $G$ and a seed node $v_s$, the objective of local graph clustering (LGC) is to identify a subgraph $C_s \in G$ (a.k.a. local cluster) surrounding $v_s$ in time roughly linear with the size of $C_s$. This approach yields personalized clusters without needing to access the entire graph, which makes it highly suitable for numerous applications involving large graphs. However, most existing solutions merely rely on the topological connectivity between nodes in $G$, rendering them vulnerable to missing or noisy links that are commonly present in real-world graphs. To address this issue, this paper resorts to leveraging the complementary nature of graph topology and node attributes to enhance local clustering quality. To effectively exploit the attribute information, we first formulate the LGC as an estimation of the bidirectional diffusion distribution (BDD), which is specialized for capturing the multi-hop affinity between nodes in the presence of attributes. Furthermore, we propose LACA, an efficient and effective approach for LGC that achieves superb empirical performance on multiple real datasets while maintaining strong locality. The core components of LACA include (i) a fast and theoretically-grounded preprocessing technique for node attributes, (ii) an adaptive algorithm for diffusing any vectors over $G$ with rigorous theoretical guarantees and expedited convergence, and (iii) an effective three-step scheme for BDD approximation. Extensive experiments, comparing 17 competitors on 8 real datasets, show that LACA outperforms all competitors in terms of result quality measured against ground truth local clusters, while also being up to orders of magnitude faster. The code is available at https://github.com/HaoranZ99/alac.
A Sample-Level Evaluation and Generative Framework for Model Inversion Attacks
Li, Haoyang, Bai, Li, Ye, Qingqing, Hu, Haibo, Xiao, Yaxin, Zheng, Huadi, Xu, Jianliang
Model Inversion (MI) attacks, which reconstruct the training dataset of neural networks, pose significant privacy concerns in machine learning. Recent MI attacks have managed to reconstruct realistic label-level private data, such as the general appearance of a target person from all training images labeled on him. Beyond label-level privacy, in this paper we show sample-level privacy, the private information of a single target sample, is also important but under-explored in the MI literature due to the limitations of existing evaluation metrics. To address this gap, this study introduces a novel metric tailored for training-sample analysis, namely, the Diversity and Distance Composite Score (DDCS), which evaluates the reconstruction fidelity of each training sample by encompassing various MI attack attributes. This, in turn, enhances the precision of sample-level privacy assessments. Leveraging DDCS as a new evaluative lens, we observe that many training samples remain resilient against even the most advanced MI attack. As such, we further propose a transfer learning framework that augments the generative capabilities of MI attackers through the integration of entropy loss and natural gradient descent. Extensive experiments verify the effectiveness of our framework on improving state-of-the-art MI attacks over various metrics including DDCS, coverage and FID. Finally, we demonstrate that DDCS can also be useful for MI defense, by identifying samples susceptible to MI attacks in an unsupervised manner.
Decoupling the Class Label and the Target Concept in Machine Unlearning
Zhu, Jianing, Han, Bo, Yao, Jiangchao, Xu, Jianliang, Niu, Gang, Sugiyama, Masashi
Machine unlearning as an emerging research topic for data regulations, aims to adjust a trained model to approximate a retrained one that excludes a portion of training data. Previous studies showed that class-wise unlearning is successful in forgetting the knowledge of a target class, through gradient ascent on the forgetting data or fine-tuning with the remaining data. However, while these methods are useful, they are insufficient as the class label and the target concept are often considered to coincide. In this work, we expand the scope by considering the label domain mismatch and investigate three problems beyond the conventional all matched forgetting, e.g., target mismatch, model mismatch, and data mismatch forgetting. We systematically analyze the new challenges in restrictively forgetting the target concept and also reveal crucial forgetting dynamics in the representation level to realize these tasks. Based on that, we propose a general framework, namely, TARget-aware Forgetting (TARF). It enables the additional tasks to actively forget the target concept while maintaining the rest part, by simultaneously conducting annealed gradient ascent on the forgetting data and selected gradient descent on the hard-to-affect remaining data. Empirically, various experiments under the newly introduced settings are conducted to demonstrate the effectiveness of our TARF.
ChatGraph: Chat with Your Graphs
Peng, Yun, Lin, Sen, Chen, Qian, Xu, Lyu, Ren, Xiaojun, Li, Yafei, Xu, Jianliang
Graph analysis is fundamental in real-world applications. Traditional approaches rely on SPARQL-like languages or clicking-and-dragging interfaces to interact with graph data. However, these methods either require users to possess high programming skills or support only a limited range of graph analysis functionalities. To address the limitations, we propose a large language model (LLM)-based framework called ChatGraph. With ChatGraph, users can interact with graphs through natural language, making it easier to use and more flexible than traditional approaches. The core of ChatGraph lies in generating chains of graph analysis APIs based on the understanding of the texts and graphs inputted in the user prompts. To achieve this, ChatGraph consists of three main modules: an API retrieval module that searches for relevant APIs, a graph-aware LLM module that enables the LLM to comprehend graphs, and an API chain-oriented finetuning module that guides the LLM in generating API chains.
Pathway to Future Symbiotic Creativity
Guo, Yike, Liu, Qifeng, Chen, Jie, Xue, Wei, Fu, Jie, Jensen, Henrik, Rosas, Fernando, Shaw, Jeffrey, Wu, Xing, Zhang, Jiji, Xu, Jianliang
This report presents a comprehensive view of our vision on the development path of the human-machine symbiotic art creation. We propose a classification of the creative system with a hierarchy of 5 classes, showing the pathway of creativity evolving from a mimic-human artist (Turing Artists) to a Machine artist in its own right. We begin with an overview of the limitations of the Turing Artists then focus on the top two-level systems, Machine Artists, emphasizing machine-human communication in art creation. In art creation, it is necessary for machines to understand humans' mental states, including desires, appreciation, and emotions, humans also need to understand machines' creative capabilities and limitations. The rapid development of immersive environment and further evolution into the new concept of metaverse enable symbiotic art creation through unprecedented flexibility of bi-directional communication between artists and art manifestation environments. By examining the latest sensor and XR technologies, we illustrate the novel way for art data collection to constitute the base of a new form of human-machine bidirectional communication and understanding in art creation. Based on such communication and understanding mechanisms, we propose a novel framework for building future Machine artists, which comes with the philosophy that a human-compatible AI system should be based on the "human-in-the-loop" principle rather than the traditional "end-to-end" dogma. By proposing a new form of inverse reinforcement learning model, we outline the platform design of machine artists, demonstrate its functions and showcase some examples of technologies we have developed. We also provide a systematic exposition of the ecosystem for AI-based symbiotic art form and community with an economic model built on NFT technology. Ethical issues for the development of machine artists are also discussed.
Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability
Zhu, Jianing, Li, Hengzhuang, Yao, Jiangchao, Liu, Tongliang, Xu, Jianliang, Han, Bo
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications. Previous paradigms either explore better scoring functions or utilize the knowledge of outliers to equip the models with the ability of OOD detection. However, few of them pay attention to the intrinsic OOD detection capability of the given model. In this work, we generally discover the existence of an intermediate stage of a model trained on in-distribution (ID) data having higher OOD detection performance than that of its final stage across different settings, and further identify one critical data-level attribution to be learning with the atypical samples. Based on such insights, we propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data. Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them. Extensive experiments and analysis demonstrate the effectiveness of our method. The code is available at: https://github.com/tmlr-group/Unleashing-Mask.
Combating Exacerbated Heterogeneity for Robust Models in Federated Learning
Zhu, Jianing, Yao, Jiangchao, Liu, Tongliang, Yao, Quanming, Xu, Jianliang, Han, Bo
Privacy and security concerns in real-world applications have led to the development of adversarially robust federated models. However, the straightforward combination between adversarial training and federated learning in one framework can lead to the undesired robustness deterioration. We discover that the attribution behind this phenomenon is that the generated adversarial data could exacerbate the data heterogeneity among local clients, making the wrapped federated learning perform poorly. To deal with this problem, we propose a novel framework called Slack Federated Adversarial Training (SFAT), assigning the client-wise slack during aggregation to combat the intensified heterogeneity. Theoretically, we analyze the convergence of the proposed method to properly relax the objective when combining federated learning and adversarial training. Experimentally, we verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets with different adversarial training and federated optimization methods. The code is publicly available at https://github.com/ZFancy/SFAT.
Graph Embedding for Combinatorial Optimization: A Survey
Peng, Yun, Choi, Byron, Xu, Jianliang
Graphs have been widely used to represent complex data in many applications, such as e-commerce, social networks, and bioinformatics. Efficient and effective analysis of graph data is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using machine learning (ML) to solve graph-based CO problems. Using ML- based CO methods, a graph has to be represented in numerical vectors, which is known as graph embedding. In this survey, we provide a thorough overview of recent graph embedding methods that have been used to solve CO problems. Most graph embedding methods have two stages: graph preprocessing and ML model learning. This survey classifies graph embedding works from the perspective of graph preprocessing tasks and ML models. Furthermore, this survey summarizes recent graph-based CO methods that exploit graph embedding. In particular, graph embedding can be employed as part of classification techniques or can be combined with search methods to find solutions to CO problems. The survey ends with several remarks on future research directions.
Geometric Active Learning via Enclosing Ball Boundary
Cao, Xiaofeng, Tsang, Ivor W., Xu, Jianliang, Shi, Zenglin, Xu, Guandong
Active Learning (AL) requires learners to retrain the classifier with the minimum human supervisions or labeling in the unlabeled data pool when the current training set is not enough. However, general AL sampling strategies with a few label support inevitably suffer from performance decrease. To identify which samples determine the performance of the classification hyperplane, Core Vector Machine (CVM) and Ball Vector Machine (BVM) use the geometry boundary points of each Minimum Enclosing Ball (MEB) to train the classification hypothesis. Their theoretical analysis and experimental results show that the improved classifiers not only converge faster but also obtain higher accuracies compared with Support Vector Machine (SVM). Inspired by this, we formulate the cluster boundary point detection issue as the MEB boundary problem after presenting a convincing proof of this observation. Because the enclosing ball boundary may have a high fitting ratio when it can not enclose the class tightly, we split the global ball problem into two kinds of small Local Minimum Enclosing Ball (LMEB): Boundary ball (B-ball) and Core ball (C-ball) to tackle its over-fitting problem. Through calculating the update of radius and center when extending the local ball space, we adopt the minimum update ball to obtain the geometric update optimization scheme of B-ball and C-ball. After proving their update relationship, we design the LEB (Local Enclosing Ball) algorithm using centers of B-ball of each class to detect the enclosing ball boundary points for AL sampling. Experimental and theoretical studies have shown that the classification accuracy, time, and space performance of our proposed method significantly are superior than the state-of-the-art algorithms.