Goto

Collaborating Authors

 Xu, Hui


Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends

arXiv.org Artificial Intelligence

Specialized hardware accelerators aid the rapid advancement of artificial intelligence (AI), and their efficiency impacts AI's environmental sustainability. This study presents the first publication of a comprehensive AI accelerator life-cycle assessment (LCA) of greenhouse gas emissions, including the first publication of manufacturing emissions of an AI accelerator. Our analysis of five Tensor Processing Units (TPUs) encompasses all stages of the hardware lifespan - from raw material extraction, manufacturing, and disposal, to energy consumption during development, deployment, and serving of AI models. Using first-party data, it offers the most comprehensive evaluation to date of AI hardware's environmental impact. We include detailed descriptions of our LCA to act as a tutorial, road map, and inspiration for other computer engineers to perform similar LCAs to help us all understand the environmental impacts of our chips and of AI. A byproduct of this study is the new metric compute carbon intensity (CCI) that is helpful in evaluating AI hardware sustainability and in estimating the carbon footprint of training and inference. This study shows that CCI improves 3x from TPU v4i to TPU v6e. Moreover, while this paper's focus is on hardware, software advancements leverage and amplify these gains.


Imitation Learning from Suboptimal Demonstrations via Meta-Learning An Action Ranker

arXiv.org Artificial Intelligence

A major bottleneck in imitation learning is the requirement of a large number of expert demonstrations, which can be expensive or inaccessible. Learning from supplementary demonstrations without strict quality requirements has emerged as a powerful paradigm to address this challenge. However, previous methods often fail to fully utilize their potential by discarding non-expert data. Our key insight is that even demonstrations that fall outside the expert distribution but outperform the learned policy can enhance policy performance. To utilize this potential, we propose a novel approach named imitation learning via meta-learning an action ranker (ILMAR). ILMAR implements weighted behavior cloning (weighted BC) on a limited set of expert demonstrations along with supplementary demonstrations. It utilizes the functional of the advantage function to selectively integrate knowledge from the supplementary demonstrations. To make more effective use of supplementary demonstrations, we introduce meta-goal in ILMAR to optimize the functional of the advantage function by explicitly minimizing the distance between the current policy and the expert policy. Comprehensive experiments using extensive tasks demonstrate that ILMAR significantly outperforms previous methods in handling suboptimal demonstrations. Code is available at https://github.com/F-GOD6/ILMAR.


ADSNet: Cross-Domain LTV Prediction with an Adaptive Siamese Network in Advertising

arXiv.org Artificial Intelligence

Advertising platforms have evolved in estimating Lifetime Value (LTV) to better align with advertisers' true performance metric. However, the sparsity of real-world LTV data presents a significant challenge to LTV predictive model(i.e., pLTV), severely limiting the their capabilities. Therefore, we propose to utilize external data, in addition to the internal data of advertising platform, to expand the size of purchase samples and enhance the LTV prediction model of the advertising platform. To tackle the issue of data distribution shift between internal and external platforms, we introduce an Adaptive Difference Siamese Network (ADSNet), which employs cross-domain transfer learning to prevent negative transfer. Specifically, ADSNet is designed to learn information that is beneficial to the target domain. We introduce a gain evaluation strategy to calculate information gain, aiding the model in learning helpful information for the target domain and providing the ability to reject noisy samples, thus avoiding negative transfer. Additionally, we also design a Domain Adaptation Module as a bridge to connect different domains, reduce the distribution distance between them, and enhance the consistency of representation space distribution. We conduct extensive offline experiments and online A/B tests on a real advertising platform. Our proposed ADSNet method outperforms other methods, improving GINI by 2$\%$. The ablation study highlights the importance of the gain evaluation strategy in negative gain sample rejection and improving model performance. Additionally, ADSNet significantly improves long-tail prediction. The online A/B tests confirm ADSNet's efficacy, increasing online LTV by 3.47$\%$ and GMV by 3.89$\%$.


Multiscale Modelling with Physics-informed Neural Network: from Large-scale Dynamics to Small-scale Predictions in Complex Systems

arXiv.org Artificial Intelligence

Multiscale phenomena manifest across various scientific domains, presenting a ubiquitous challenge in accurately and effectively predicting multiscale dynamics in complex systems. In this paper, a novel decoupling solving mode is proposed through modelling large-scale dynamics independently and treating small-scale dynamics as a slaved system. A Spectral Physics-informed Neural Network (PINN) is developed to characterize the small-scale system in an efficient and accurate way. The effectiveness of the method is demonstrated through extensive numerical experiments, including one-dimensional Kuramot-Sivashinsky equation, two- and three-dimensional Navier-Stokes equations, showcasing its versatility in addressing problems of fluid dynamics. Furthermore, we also delve into the application of the proposed approach to more complex problems, including non-uniform meshes, complex geometries, large-scale data with noise, and high-dimensional small-scale dynamics. The discussions about these scenarios contribute to a comprehensive understanding of the method's capabilities and limitations. This paper presents a valuable and promising approach to enhance the computational simulations of multiscale spatiotemporal systems, which enables the acquisition of large-scale data with minimal computational demands, followed by Spectral PINN to capture small-scale dynamics with improved efficiency and accuracy.


An Incentive Mechanism for Federated Learning Based on Multiple Resource Exchange

arXiv.org Artificial Intelligence

Federated Learning (FL) is a distributed machine learning paradigm that addresses privacy concerns in machine learning and still guarantees high test accuracy. However, achieving the necessary accuracy by having all clients participate in FL is impractical, given the constraints of client local computing resource. In this paper, we introduce a multi-user collaborative computing framework, categorizing users into two roles: model owners (MOs) and data owner (DOs). Without resorting to monetary incentives, an MO can encourage more DOs to join in FL by allowing the DOs to offload extra local computing tasks to the MO for execution. This exchange of "data" for "computing resources" streamlines the incentives for clients to engage more effectively in FL. We formulate the interaction between MO and DOs as an optimization problem, and the objective is to effectively utilize the communication and computing resource of the MO and DOs to minimize the time to complete an FL task. The proposed problem is a mixed integer nonlinear programming (MINLP) with high computational complexity. We first decompose it into two distinct subproblems, namely the client selection problem and the resource allocation problem to segregate the integer variables from the continuous variables. Then, an effective iterative algorithm is proposed to solve problem. Simulation results demonstrate that the proposed collaborative computing framework can achieve an accuracy of more than 95\% while minimizing the overall time to complete an FL task.


SHAPE: A Sample-adaptive Hierarchical Prediction Network for Medication Recommendation

arXiv.org Artificial Intelligence

Effectively medication recommendation with complex multimorbidity conditions is a critical task in healthcare. Most existing works predicted medications based on longitudinal records, which assumed the information transmitted patterns of learning longitudinal sequence data are stable and intra-visit medical events are serialized. However, the following conditions may have been ignored: 1) A more compact encoder for intra-relationship in the intra-visit medical event is urgent; 2) Strategies for learning accurate representations of the variable longitudinal sequences of patients are different. In this paper, we proposed a novel Sample-adaptive Hierarchical medicAtion Prediction nEtwork, termed SHAPE, to tackle the above challenges in the medication recommendation task. Specifically, we design a compact intra-visit set encoder to encode the relationship in the medical event for obtaining visit-level representation and then develop an inter-visit longitudinal encoder to learn the patient-level longitudinal representation efficiently. To endow the model with the capability of modeling the variable visit length, we introduce a soft curriculum learning method to assign the difficulty of each sample automatically by the visit length. Extensive experiments on a benchmark dataset verify the superiority of our model compared with several state-of-the-art baselines.


Physics-Assisted Reduced-Order Modeling for Identifying Dominant Features of Transonic Buffet

arXiv.org Artificial Intelligence

Transonic buffet is a flow instability phenomenon that arises from the interaction between the shock wave and the separated boundary layer. This flow phenomenon is considered to be highly detrimental during flight and poses a significant risk to the structural strength and fatigue life of aircraft. Up to now, there has been a lack of an accurate, efficient, and intuitive metric to predict buffet and impose a feasible constraint on aerodynamic design. In this paper, a Physics-Assisted Variational Autoencoder (PAVAE) is proposed to identify dominant features of transonic buffet, which combines unsupervised reduced-order modeling with additional physical information embedded via a buffet classifier. Specifically, four models with various weights adjusting the contribution of the classifier are trained, so as to investigate the impact of buffet information on the latent space. Statistical results reveal that buffet state can be determined exactly with just one latent space when a proper weight of classifier is chosen. The dominant latent space further reveals a strong relevance with the key flow features located in the boundary layers downstream of shock. Based on this identification, the displacement thickness at 80% chordwise location is proposed as a metric for buffet prediction. This metric achieves an accuracy of 98.5% in buffet state classification, which is more reliable than the existing separation metric used in design. The proposed method integrates the benefits of feature extraction, flow reconstruction, and buffet prediction into a unified framework, demonstrating its potential in low-dimensional representations of high-dimensional flow data and interpreting the "black box" neural network.


Temporal Knowledge Graph Reasoning with Historical Contrastive Learning

arXiv.org Artificial Intelligence

Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.


Segmentation, Classification, and Quality Assessment of UW-OCTA Images for the Diagnosis of Diabetic Retinopathy

arXiv.org Artificial Intelligence

Diabetic Retinopathy (DR) is a severe complication of diabetes that can cause blindness. Although effective treatments exist (notably laser) to slow the progression of the disease and prevent blindness, the best treatment remains prevention through regular check-ups (at least once a year) with an ophthalmologist. Optical Coherence Tomography Angiography (OCTA) allows for the visualization of the retinal vascularization, and the choroid at the microvascular level in great detail. This allows doctors to diagnose DR with more precision. In recent years, algorithms for DR diagnosis have emerged along with the development of deep learning and the improvement of computer hardware. However, these usually focus on retina photography. There are no current methods that can automatically analyze DR using Ultra-Wide OCTA (UW-OCTA). The Diabetic Retinopathy Analysis Challenge 2022 (DRAC22) provides a standardized UW-OCTA dataset to train and test the effectiveness of various algorithms on three tasks: lesions segmentation, quality assessment, and DR grading. In this paper, we will present our solutions for the three tasks of the DRAC22 challenge. The obtained results are promising and have allowed us to position ourselves in the TOP 5 of the segmentation task, the TOP 4 of the quality assessment task, and the TOP 3 of the DR grading task. The code is available at \url{https://github.com/Mostafa-EHD/Diabetic_Retinopathy_OCTA}.


Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of Head and Neck Cancers with PET/CT images

arXiv.org Artificial Intelligence

Automatic segmentation of head and neck cancer (HNC) tumors and lymph nodes plays a crucial role in the optimization treatment strategy and prognosis analysis. This study aims to employ nnU-Net for automatic segmentation and radiomics for recurrence-free survival (RFS) prediction using pretreatment PET/CT images in multi-center HNC cohort. A multi-center HNC dataset with 883 patients (524 patients for training, 359 for testing) was provided in HECKTOR 2022. A bounding box of the extended oropharyngeal region was retrieved for each patient with fixed size of 224 x 224 x 224 $mm^{3}$. Then 3D nnU-Net architecture was adopted to automatic segmentation of primary tumor and lymph nodes synchronously.Based on predicted segmentation, ten conventional features and 346 standardized radiomics features were extracted for each patient. Three prognostic models were constructed containing conventional and radiomics features alone, and their combinations by multivariate CoxPH modelling. The statistical harmonization method, ComBat, was explored towards reducing multicenter variations. Dice score and C-index were used as evaluation metrics for segmentation and prognosis task, respectively. For segmentation task, we achieved mean dice score around 0.701 for primary tumor and lymph nodes by 3D nnU-Net. For prognostic task, conventional and radiomics models obtained the C-index of 0.658 and 0.645 in the test set, respectively, while the combined model did not improve the prognostic performance with the C-index of 0.648.