Xu, Hengyuan
Safety at Scale: A Comprehensive Survey of Large Model Safety
Ma, Xingjun, Gao, Yifeng, Wang, Yixu, Wang, Ruofan, Wang, Xin, Sun, Ye, Ding, Yifan, Xu, Hengyuan, Chen, Yunhao, Zhao, Yunhan, Huang, Hanxun, Li, Yige, Zhang, Jiaming, Zheng, Xiang, Bai, Yang, Wu, Zuxuan, Qiu, Xipeng, Zhang, Jingfeng, Li, Yiming, Sun, Jun, Wang, Cong, Gu, Jindong, Wu, Baoyuan, Chen, Siheng, Zhang, Tianwei, Liu, Yang, Gong, Mingming, Liu, Tongliang, Pan, Shirui, Xie, Cihang, Pang, Tianyu, Dong, Yinpeng, Jia, Ruoxi, Zhang, Yang, Ma, Shiqing, Zhang, Xiangyu, Gong, Neil, Xiao, Chaowei, Erfani, Sarah, Li, Bo, Sugiyama, Masashi, Tao, Dacheng, Bailey, James, Jiang, Yu-Gang
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
Enhancing Code LLMs with Reinforcement Learning in Code Generation: A Survey
Wang, Junqiao, Zhang, Zeng, He, Yangfan, Song, Yuyang, Shi, Tianyu, Li, Yuchen, Xu, Hengyuan, Wu, Kunyu, Qian, Guangwu, Chen, Qiuwu, He, Lewei
With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
Hufu: A Modality-Agnositc Watermarking System for Pre-Trained Transformers via Permutation Equivariance
Xu, Hengyuan, Xiang, Liyao, Ma, Xingjun, Yang, Borui, Li, Baochun
With the blossom of deep learning models and services, it has become an imperative concern to safeguard the valuable model parameters from being stolen. Watermarking is considered an important tool for ownership verification. However, current watermarking schemes are customized for different models and tasks, hard to be integrated as an integrated intellectual protection service. We propose Hufu, a modality-agnostic watermarking system for pre-trained Transformer-based models, relying on the permutation equivariance property of Transformers. Hufu embeds watermark by fine-tuning the pre-trained model on a set of data samples specifically permuted, and the embedded model essentially contains two sets of weights -- one for normal use and the other for watermark extraction which is triggered on permuted inputs. The permutation equivariance ensures minimal interference between these two sets of model weights and thus high fidelity on downstream tasks. Since our method only depends on the model itself, it is naturally modality-agnostic, task-independent, and trigger-sample-free. Extensive experiments on the state-of-the-art vision Transformers, BERT, and GPT2 have demonstrated Hufu's superiority in meeting watermarking requirements including effectiveness, efficiency, fidelity, and robustness, showing its great potential to be deployed as a uniform ownership verification service for various Transformers.