Goto

Collaborating Authors

 Xu, Fei


Resource Heterogeneity-Aware and Utilization-Enhanced Scheduling for Deep Learning Clusters

arXiv.org Artificial Intelligence

Scheduling deep learning (DL) models to train on powerful clusters with accelerators like GPUs and TPUs, presently falls short, either lacking fine-grained heterogeneity awareness or leaving resources substantially under-utilized. To fill this gap, we propose a novel design of a task-level heterogeneity-aware scheduler, {\em Hadar}, based on an optimization framework that can boost resource utilization. {\em Hadar} leverages the performance traits of DL jobs on a heterogeneous DL cluster, characterizes the task-level performance heterogeneity in the optimization problem, and makes scheduling decisions across both spatial and temporal dimensions. %with the objective to reduce the average job completion time of DL jobs. It involves the primal-dual framework employing a dual subroutine, to solve the optimization problem and guide the scheduling design. Our trace-driven simulation with representative DL model training workloads demonstrates that {\em Hadar} accelerates the total time duration by 1.20$\times$ when compared with its state-of-the-art heterogeneity-aware counterpart, Gavel. Further, our {\em Hadar} scheduler is enhanced to {\em HadarE} by forking each job into multiple copies to let a job train concurrently on heterogeneous GPUs resided on separate available nodes (i.e., machines or servers) for resource utilization enhancement. {\em HadarE} is evaluated extensively on physical DL clusters for comparison with {\em Hadar} and Gavel. With substantial enhancement in cluster resource utilization (by 1.45$\times$), {\em HadarE} exhibits considerable speed-ups in DL model training, reducing the total time duration by 50\% (or 80\%) on an Amazon's AWS (or our lab) cluster, while producing trained DL models with consistently better inference quality than those trained by \textit{Hadar}.


SEAFL: Enhancing Efficiency in Semi-Asynchronous Federated Learning through Adaptive Aggregation and Selective Training

arXiv.org Artificial Intelligence

Federated Learning (FL) is a promising distributed machine learning framework that allows collaborative learning of a global model across decentralized devices without uploading their local data. However, in real-world FL scenarios, the conventional synchronous FL mechanism suffers from inefficient training caused by slow-speed devices, commonly known as stragglers, especially in heterogeneous communication environments. Though asynchronous FL effectively tackles the efficiency challenge, it induces substantial system overheads and model degradation. Striking for a balance, semi-asynchronous FL has gained increasing attention, while still suffering from the open challenge of stale models, where newly arrived updates are calculated based on outdated weights that easily hurt the convergence of the global model. In this paper, we present {\em SEAFL}, a novel FL framework designed to mitigate both the straggler and the stale model challenges in semi-asynchronous FL. {\em SEAFL} dynamically assigns weights to uploaded models during aggregation based on their staleness and importance to the current global model. We theoretically analyze the convergence rate of {\em SEAFL} and further enhance the training efficiency with an extended variant that allows partial training on slower devices, enabling them to contribute to global aggregation while reducing excessive waiting times. We evaluate the effectiveness of {\em SEAFL} through extensive experiments on three benchmark datasets. The experimental results demonstrate that {\em SEAFL} outperforms its closest counterpart by up to $\sim$22\% in terms of the wall-clock training time required to achieve target accuracy.


Guided and Variance-Corrected Fusion with One-shot Style Alignment for Large-Content Image Generation

arXiv.org Artificial Intelligence

Producing large images using small diffusion models is gaining increasing popularity, as the cost of training large models could be prohibitive. A common approach involves jointly generating a series of overlapped image patches and obtaining large images by merging adjacent patches. However, results from existing methods often exhibit obvious artifacts, e.g., seams and inconsistent objects and styles. To address the issues, we proposed Guided Fusion (GF), which mitigates the negative impact from distant image regions by applying a weighted average to the overlapping regions. Moreover, we proposed Variance-Corrected Fusion (VCF), which corrects data variance at post-averaging, generating more accurate fusion for the Denoising Diffusion Probabilistic Model. Furthermore, we proposed a one-shot Style Alignment (SA), which generates a coherent style for large images by adjusting the initial input noise without adding extra computational burden. Extensive experiments demonstrated that the proposed fusion methods improved the quality of the generated image significantly. As a plug-and-play module, the proposed method can be widely applied to enhance other fusion-based methods for large image generation.


A Knowledge-Informed Large Language Model Framework for U.S. Nuclear Power Plant Shutdown Initiating Event Classification for Probabilistic Risk Assessment

arXiv.org Artificial Intelligence

Identifying and classifying shutdown initiating events (SDIEs) is critical for developing low power shutdown probabilistic risk assessment for nuclear power plants. Existing computational approaches cannot achieve satisfactory performance due to the challenges of unavailable large, labeled datasets, imbalanced event types, and label noise. To address these challenges, we propose a hybrid pipeline that integrates a knowledge-informed machine learning mode to prescreen non-SDIEs and a large language model (LLM) to classify SDIEs into four types. In the prescreening stage, we proposed a set of 44 SDIE text patterns that consist of the most salient keywords and phrases from six SDIE types. Text vectorization based on the SDIE patterns generates feature vectors that are highly separable by using a simple binary classifier. The second stage builds Bidirectional Encoder Representations from Transformers (BERT)-based LLM, which learns generic English language representations from self-supervised pretraining on a large dataset and adapts to SDIE classification by fine-tuning it on an SDIE dataset. The proposed approaches are evaluated on a dataset with 10,928 events using precision, recall ratio, F1 score, and average accuracy. The results demonstrate that the prescreening stage can exclude more than 97% non-SDIEs, and the LLM achieves an average accuracy of 93.4% for SDIE classification.


FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering

arXiv.org Artificial Intelligence

Federated learning (FL) is an emerging distributed machine learning paradigm that enables collaborative training of machine learning models over decentralized devices without exposing their local data. One of the major challenges in FL is the presence of uneven data distributions across client devices, violating the well-known assumption of independent-and-identically-distributed (IID) training samples in conventional machine learning. To address the performance degradation issue incurred by such data heterogeneity, clustered federated learning (CFL) shows its promise by grouping clients into separate learning clusters based on the similarity of their local data distributions. However, state-of-the-art CFL approaches require a large number of communication rounds to learn the distribution similarities during training until the formation of clusters is stabilized. Moreover, some of these algorithms heavily rely on a predefined number of clusters, thus limiting their flexibility and adaptability. In this paper, we propose {\em FedClust}, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients. {\em FedClust} groups clients into clusters in a one-shot manner by measuring the similarity degrees among clients based on the strategically selected partial weights of locally trained models. We conduct extensive experiments on four benchmark datasets with different non-IID data settings. Experimental results demonstrate that {\em FedClust} achieves higher model accuracy up to $\sim$45\% as well as faster convergence with a significantly reduced communication cost up to 2.7$\times$ compared to its state-of-the-art counterparts.


Causality Extraction from Nuclear Licensee Event Reports Using a Hybrid Framework

arXiv.org Artificial Intelligence

Industry-wide nuclear power plant operating experience is a critical source of raw data for performing parameter estimations in reliability and risk models. Much operating experience information pertains to failure events and is stored as reports containing unstructured data, such as narratives. Event reports are essential for understanding how failures are initiated and propagated, including the numerous causal relations involved. Causal relation extraction using deep learning represents a significant frontier in the field of natural language processing (NLP), and is crucial since it enables the interpretation of intricate narratives and connections contained within vast amounts of written information. This paper proposed a hybrid framework for causality detection and extraction from nuclear licensee event reports. The main contributions include: (1) we compiled an LER corpus with 20,129 text samples for causality analysis, (2) developed an interactive tool for labeling cause effect pairs, (3) built a deep-learning-based approach for causal relation detection, and (4) developed a knowledge based cause-effect extraction approach.


FedClust: Optimizing Federated Learning on Non-IID Data through Weight-Driven Client Clustering

arXiv.org Artificial Intelligence

Federated learning (FL) is an emerging distributed machine learning paradigm enabling collaborative model training on decentralized devices without exposing their local data. A key challenge in FL is the uneven data distribution across client devices, violating the well-known assumption of independent-and-identically-distributed (IID) training samples in conventional machine learning. Clustered federated learning (CFL) addresses this challenge by grouping clients based on the similarity of their data distributions. However, existing CFL approaches require a large number of communication rounds for stable cluster formation and rely on a predefined number of clusters, thus limiting their flexibility and adaptability. This paper proposes FedClust, a novel CFL approach leveraging correlations between local model weights and client data distributions. FedClust groups clients into clusters in a one-shot manner using strategically selected partial model weights and dynamically accommodates newcomers in real-time. Experimental results demonstrate FedClust outperforms baseline approaches in terms of accuracy and communication costs.


Opara: Exploiting Operator Parallelism for Expediting DNN Inference on GPUs

arXiv.org Artificial Intelligence

GPUs have become the defacto hardware devices to accelerate Deep Neural Network (DNN) inference in deep learning(DL) frameworks. However, the conventional sequential execution mode of DNN operators in mainstream DL frameworks cannot fully utilize GPU resources, due to the increasing complexity of DNN model structures and the progressively smaller computational sizes of DNN operators. Moreover, the inadequate operator launch order in parallelized execution scenarios can lead to GPU resource wastage and unexpected performance interference among operators. To address such performance issues above, we propose Opara, a resource- and interference-aware DNN Operator parallel scheduling framework to accelerate the execution of DNN inference on GPUs. Specifically, Opara first employs CUDA Streams and CUDA Graph to automatically parallelize the execution of multiple DNN operators. It further leverages the resource demands of DNN operators to judiciously adjust the operator launch order on GPUs by overlapping the execution of compute-intensive and memory-intensive operators, so as to expedite DNN inference. We implement and open source a prototype of Opara based on PyTorch in a non-intrusive manner. Extensive prototype experiments with representative DNN and Transformer-based models demonstrate that Opara outperforms the default sequential CUDA Graph in PyTorch and the state-of-the-art DNN operator parallelism systems by up to 1.68$\times$ and 1.29$\times$, respectively, yet with acceptable runtime overhead.


Review of Machine Learning Methods for Additive Manufacturing of Functionally Graded Materials

arXiv.org Artificial Intelligence

Additive manufacturing has revolutionized the manufacturing of complex parts by enabling direct material joining and offers several advantages such as cost-effective manufacturing of complex parts, reducing manufacturing waste, and opening new possibilities for manufacturing automation. One group of materials for which additive manufacturing holds great potential for enhancing component performance and properties is Functionally Graded Materials (FGMs). FGMs are advanced composite materials that exhibit smoothly varying properties making them desirable for applications in aerospace, automobile, biomedical, and defense industries. Such composition differs from traditional composite materials, since the location-dependent composition changes gradually in FGMs, leading to enhanced properties. Recently, machine learning techniques have emerged as a promising means for fabrication of FGMs through optimizing processing parameters, improving product quality, and detecting manufacturing defects. This paper first provides a brief literature review of works related to FGM fabrication, followed by reviewing works on employing machine learning in additive manufacturing, Afterward, we provide an overview of published works in the literature related to the application of machine learning methods in Directed Energy Deposition and for fabrication of FGMs.


AGFormer: Efficient Graph Representation with Anchor-Graph Transformer

arXiv.org Artificial Intelligence

To alleviate the local receptive issue of GCN, Transformers have been exploited to capture the long range dependences of nodes for graph data representation and learning. However, existing graph Transformers generally employ regular self-attention module for all node-to-node message passing which needs to learn the affinities/relationships between all node's pairs, leading to high computational cost issue. Also, they are usually sensitive to graph noises. To overcome this issue, we propose a novel graph Transformer architecture, termed Anchor Graph Transformer (AGFormer), by leveraging an anchor graph model. To be specific, AGFormer first obtains some representative anchors and then converts node-to-node message passing into anchor-to-anchor and anchor-to-node message passing process. Thus, AGFormer performs much more efficiently and also robustly than regular node-to-node Transformers. Extensive experiments on several benchmark datasets demonstrate the effectiveness and benefits of proposed AGFormer.