Goto

Collaborating Authors

 Xu, Derong


Sliding Window Attention Training for Efficient Large Language Models

arXiv.org Artificial Intelligence

Recent advances in transformer-based Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks. However, their quadratic computational complexity concerning sequence length remains a significant bottleneck for processing long documents. As a result, many efforts like sparse attention and state space models have been proposed to improve the efficiency of LLMs over long sequences. Though effective, these approaches compromise the performance or introduce structural complexity. This calls for a simple yet efficient model that preserves the fundamental Transformer architecture. To this end, we introduce SWAT, which enables efficient long-context handling via Sliding Window Attention Training. This paper first attributes the inefficiency of Transformers to the attention sink phenomenon resulting from the high variance of softmax operation. Then, we replace softmax with the sigmoid function and utilize a balanced ALiBi and Rotary Position Embedding for efficient information compression and retention. Experiments demonstrate that SWAT achieves SOTA performance compared with state-of-the-art linear recurrent architectures on eight benchmarks. Code is available at https://anonymous.4open.science/r/SWAT-attention.


Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) demonstrate remarkable capabilities, yet struggle with hallucination and outdated knowledge when tasked with complex knowledge reasoning, resulting in factually incorrect outputs. Previous studies have attempted to mitigate it by retrieving factual knowledge from large-scale knowledge graphs (KGs) to assist LLMs in logical reasoning and prediction of answers. However, this kind of approach often introduces noise and irrelevant data, especially in situations with extensive context from multiple knowledge aspects. In this way, LLM attention can be potentially mislead from question and relevant information. In our study, we introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework. This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings. The Amar framework comprises two key sub-components: 1) a self-alignment module that aligns commonalities among entities, relations, and subgraphs to enhance retrieved text, thereby reducing noise interference; 2) a relevance gating module that employs a soft gate to learn the relevance score between question and multi-aspect retrieved data, to determine which information should be used to enhance LLMs' output, or even filtered altogether. Our method has achieved state-of-the-art performance on two common datasets, WebQSP and CWQ, showing a 1.9\% improvement in accuracy over its best competitor and a 6.6\% improvement in logical form generation over a method that directly uses retrieved text as context prompts. These results demonstrate the effectiveness of Amar in improving the reasoning of LLMs.


Bridging Relevance and Reasoning: Rationale Distillation in Retrieval-Augmented Generation

arXiv.org Artificial Intelligence

The reranker and generator are two critical components in the Retrieval-Augmented Generation (i.e., RAG) pipeline, responsible for ranking relevant documents and generating responses. However, due to differences in pre-training data and objectives, there is an inevitable gap between the documents ranked as relevant by the reranker and those required by the generator to support answering the query. To address this gap, we propose RADIO, a novel and practical preference alignment framework with RAtionale DIstillatiOn. Specifically, We first propose a rationale extraction method that leverages the reasoning capabilities of Large Language Models (LLMs) to extract the rationales necessary for answering the query. Subsequently, a rationale-based alignment process is designed to rerank the documents based on the extracted rationales, and fine-tune the reranker to align the preferences. We conduct extensive experiments on two tasks across three datasets to demonstrate the effectiveness of our approach compared to baseline methods. Our code is released online to ease reproduction.


Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding

arXiv.org Artificial Intelligence

The impressive capabilities of large language models (LLMs) have attracted extensive interests of applying LLMs to medical field. However, the complex nature of clinical environments presents significant hallucination challenges for LLMs, hindering their widespread adoption. In this paper, we address these hallucination issues in the context of Medical Information Extraction (MIE) tasks by introducing ALternate Contrastive Decoding (ALCD). We begin by redefining MIE tasks as an identify-and-classify process. We then separate the identification and classification functions of LLMs by selectively masking the optimization of tokens during fine-tuning. During the inference stage, we alternately contrast output distributions derived from sub-task models. This approach aims to selectively enhance the identification and classification capabilities while minimizing the influence of other inherent abilities in LLMs. Additionally, we propose an alternate adaptive constraint strategy to more effectively adjust the scale and scope of contrastive tokens. Through comprehensive experiments on two different backbones and six diverse medical information extraction tasks, ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.


Editing Factual Knowledge and Explanatory Ability of Medical Large Language Models

arXiv.org Artificial Intelligence

Model editing aims to precisely alter the behaviors of large language models (LLMs) in relation to specific knowledge, while leaving unrelated knowledge intact. This approach has proven effective in addressing issues of hallucination and outdated information in LLMs. However, the potential of using model editing to modify knowledge in the medical field remains largely unexplored, even though resolving hallucination is a pressing need in this area. Our observations indicate that current methods face significant challenges in dealing with specialized and complex knowledge in medical domain. Therefore, we propose MedLaSA, a novel Layer-wise Scalable Adapter strategy for medical model editing. MedLaSA harnesses the strengths of both adding extra parameters and locate-then-edit methods for medical model editing. We utilize causal tracing to identify the association of knowledge in neurons across different layers, and generate a corresponding scale set from the association value for each piece of knowledge. Subsequently, we incorporate scalable adapters into the dense layers of LLMs. These adapters are assigned scaling values based on the corresponding specific knowledge, which allows for the adjustment of the adapter's weight and rank. The more similar the content, the more consistent the scale between them. This ensures precise editing of semantically identical knowledge while avoiding impact on unrelated knowledge. To evaluate the editing impact on the behaviours of LLMs, we propose two model editing studies for medical domain: (1) editing factual knowledge for medical specialization and (2) editing the explanatory ability for complex knowledge. We build two novel medical benchmarking datasets and introduce a series of challenging and comprehensive metrics. Extensive experiments on medical LLMs demonstrate the editing efficiency of MedLaSA, without affecting unrelated knowledge.


Multi-perspective Improvement of Knowledge Graph Completion with Large Language Models

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) is a widely used method to tackle incompleteness in knowledge graphs (KGs) by making predictions for missing links. Description-based KGC leverages pre-trained language models to learn entity and relation representations with their names or descriptions, which shows promising results. However, the performance of description-based KGC is still limited by the quality of text and the incomplete structure, as it lacks sufficient entity descriptions and relies solely on relation names, leading to sub-optimal results. To address this issue, we propose MPIKGC, a general framework to compensate for the deficiency of contextualized knowledge and improve KGC by querying large language models (LLMs) from various perspectives, which involves leveraging the reasoning, explanation, and summarization capabilities of LLMs to expand entity descriptions, understand relations, and extract structures, respectively. We conducted extensive evaluation of the effectiveness and improvement of our framework based on four description-based KGC models and four datasets, for both link prediction and triplet classification tasks.


Large Language Models for Generative Information Extraction: A Survey

arXiv.org Artificial Intelligence

Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: \url{https://github.com/quqxui/Awesome-LLM4IE-Papers}.


MOELoRA: An MOE-based Parameter Efficient Fine-Tuning Method for Multi-task Medical Applications

arXiv.org Artificial Intelligence

The recent surge in the field of Large Language Models (LLMs) has gained significant attention in numerous domains. In order to tailor an LLM to a specific domain such as a web-based healthcare system, fine-tuning with domain knowledge is necessary. However, two issues arise during fine-tuning LLMs for medical applications. The first is the problem of task variety, where there are numerous distinct tasks in real-world medical scenarios. This diversity often results in suboptimal fine-tuning due to data imbalance and seesawing problems. Additionally, the high cost of fine-tuning can be prohibitive, impeding the application of LLMs. The large number of parameters in LLMs results in enormous time and computational consumption during fine-tuning, which is difficult to justify. To address these two issues simultaneously, we propose a novel parameter-efficient fine-tuning framework for multi-task medical applications called MOELoRA. The framework aims to capitalize on the benefits of both MOE for multi-task learning and LoRA for parameter-efficient fine-tuning. To unify MOE and LoRA, we devise multiple experts as the trainable parameters, where each expert consists of a pair of low-rank matrices to maintain a small number of trainable parameters. Additionally, we propose a task-motivated gate function for all MOELoRA layers that can regulate the contributions of each expert and generate distinct parameters for various tasks. To validate the effectiveness and practicality of the proposed method, we conducted comprehensive experiments on a public multi-task Chinese medical dataset. The experimental results demonstrate that MOELoRA outperforms existing parameter-efficient fine-tuning methods. The implementation is available online for convenient reproduction of our experiments.