Xu, Chen
Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Xu, Chen, Nguyen, Tony Khuong, Dixon, Emma, Rodriguez, Christopher, Miller, Patrick, Lee, Robert, Shah, Paarth, Ambrus, Rares, Nishimura, Haruki, Itkina, Masha
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
Qilin: A Multimodal Information Retrieval Dataset with APP-level User Sessions
Chen, Jia, Dong, Qian, Li, Haitao, He, Xiaohui, Gao, Yan, Cao, Shaosheng, Wu, Yi, Yang, Ping, Xu, Chen, Hu, Yao, Ai, Qingyao, Liu, Yiqun
User-generated content (UGC) communities, especially those featuring multimodal content, improve user experiences by integrating visual and textual information into results (or items). The challenge of improving user experiences in complex systems with search and recommendation (S\&R) services has drawn significant attention from both academia and industry these years. However, the lack of high-quality datasets has limited the research progress on multimodal S\&R. To address the growing need for developing better S\&R services, we present a novel multimodal information retrieval dataset in this paper, namely Qilin. The dataset is collected from Xiaohongshu, a popular social platform with over 300 million monthly active users and an average search penetration rate of over 70\%. In contrast to existing datasets, \textsf{Qilin} offers a comprehensive collection of user sessions with heterogeneous results like image-text notes, video notes, commercial notes, and direct answers, facilitating the development of advanced multimodal neural retrieval models across diverse task settings. To better model user satisfaction and support the analysis of heterogeneous user behaviors, we also collect extensive APP-level contextual signals and genuine user feedback. Notably, Qilin contains user-favored answers and their referred results for search requests triggering the Deep Query Answering (DQA) module. This allows not only the training \& evaluation of a Retrieval-augmented Generation (RAG) pipeline, but also the exploration of how such a module would affect users' search behavior. Through comprehensive analysis and experiments, we provide interesting findings and insights for further improving S\&R systems. We hope that \textsf{Qilin} will significantly contribute to the advancement of multimodal content platforms with S\&R services in the future.
Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Huang, Ailin, Wu, Boyong, Wang, Bruce, Yan, Chao, Hu, Chen, Feng, Chengli, Tian, Fei, Shen, Feiyu, Li, Jingbei, Chen, Mingrui, Liu, Peng, Miao, Ruihang, You, Wang, Chen, Xi, Yang, Xuerui, Huang, Yechang, Zhang, Yuxiang, Gong, Zheng, Zhang, Zixin, Zhou, Hongyu, Sun, Jianjian, Li, Brian, Feng, Chengting, Wan, Changyi, Hu, Hanpeng, Wu, Jianchang, Zhen, Jiangjie, Ming, Ranchen, Yuan, Song, Zhang, Xuelin, Zhou, Yu, Li, Bingxin, Ma, Buyun, Wang, Hongyuan, An, Kang, Ji, Wei, Li, Wen, Wen, Xuan, Kong, Xiangwen, Ma, Yuankai, Liang, Yuanwei, Mou, Yun, Ahmidi, Bahtiyar, Wang, Bin, Li, Bo, Miao, Changxin, Xu, Chen, Wang, Chenrun, Shi, Dapeng, Sun, Deshan, Hu, Dingyuan, Sai, Dula, Liu, Enle, Huang, Guanzhe, Yan, Gulin, Wang, Heng, Jia, Haonan, Zhang, Haoyang, Gong, Jiahao, Guo, Junjing, Liu, Jiashuai, Liu, Jiahong, Feng, Jie, Wu, Jie, Wu, Jiaoren, Yang, Jie, Wang, Jinguo, Zhang, Jingyang, Lin, Junzhe, Li, Kaixiang, Xia, Lei, Zhou, Li, Zhao, Liang, Gu, Longlong, Chen, Mei, Wu, Menglin, Li, Ming, Li, Mingxiao, Li, Mingliang, Liang, Mingyao, Wang, Na, Hao, Nie, Wu, Qiling, Tan, Qinyuan, Sun, Ran, Shuai, Shuai, Pang, Shaoliang, Yang, Shiliang, Gao, Shuli, Yuan, Shanshan, Liu, Siqi, Deng, Shihong, Jiang, Shilei, Liu, Sitong, Cao, Tiancheng, Wang, Tianyu, Deng, Wenjin, Xie, Wuxun, Ming, Weipeng, He, Wenqing, Sun, Wen, Han, Xin, Huang, Xin, Deng, Xiaomin, Liu, Xiaojia, Wu, Xin, Zhao, Xu, Wei, Yanan, Yu, Yanbo, Cao, Yang, Li, Yangguang, Ma, Yangzhen, Xu, Yanming, Wang, Yaoyu, Shi, Yaqiang, Wang, Yilei, Zhou, Yizhuang, Zhong, Yinmin, Zhang, Yang, Wei, Yaoben, Luo, Yu, Lu, Yuanwei, Yin, Yuhe, Luo, Yuchu, Ding, Yuanhao, Yan, Yuting, Dai, Yaqi, Yang, Yuxiang, Xie, Zhe, Ge, Zheng, Sun, Zheng, Huang, Zhewei, Chang, Zhichao, Guan, Zhisheng, Yang, Zidong, Zhang, Zili, Jiao, Binxing, Jiang, Daxin, Shum, Heung-Yeung, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Zhang, Xinhao, Zhu, Yibo
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
Ma, Guoqing, Huang, Haoyang, Yan, Kun, Chen, Liangyu, Duan, Nan, Yin, Shengming, Wan, Changyi, Ming, Ranchen, Song, Xiaoniu, Chen, Xing, Zhou, Yu, Sun, Deshan, Zhou, Deyu, Zhou, Jian, Tan, Kaijun, An, Kang, Chen, Mei, Ji, Wei, Wu, Qiling, Sun, Wen, Han, Xin, Wei, Yanan, Ge, Zheng, Li, Aojie, Wang, Bin, Huang, Bizhu, Wang, Bo, Li, Brian, Miao, Changxing, Xu, Chen, Wu, Chenfei, Yu, Chenguang, Shi, Dapeng, Hu, Dingyuan, Liu, Enle, Yu, Gang, Yang, Ge, Huang, Guanzhe, Yan, Gulin, Feng, Haiyang, Nie, Hao, Jia, Haonan, Hu, Hanpeng, Chen, Hanqi, Yan, Haolong, Wang, Heng, Guo, Hongcheng, Xiong, Huilin, Xiong, Huixin, Gong, Jiahao, Wu, Jianchang, Wu, Jiaoren, Wu, Jie, Yang, Jie, Liu, Jiashuai, Li, Jiashuo, Zhang, Jingyang, Guo, Junjing, Lin, Junzhe, Li, Kaixiang, Liu, Lei, Xia, Lei, Zhao, Liang, Tan, Liguo, Huang, Liwen, Shi, Liying, Li, Ming, Li, Mingliang, Cheng, Muhua, Wang, Na, Chen, Qiaohui, He, Qinglin, Liang, Qiuyan, Sun, Quan, Sun, Ran, Wang, Rui, Pang, Shaoliang, Yang, Shiliang, Liu, Sitong, Liu, Siqi, Gao, Shuli, Cao, Tiancheng, Wang, Tianyu, Ming, Weipeng, He, Wenqing, Zhao, Xu, Zhang, Xuelin, Zeng, Xianfang, Liu, Xiaojia, Yang, Xuan, Dai, Yaqi, Yu, Yanbo, Li, Yang, Deng, Yineng, Wang, Yingming, Wang, Yilei, Lu, Yuanwei, Chen, Yu, Luo, Yu, Luo, Yuchu, Yin, Yuhe, Feng, Yuheng, Yang, Yuxiang, Tang, Zecheng, Zhang, Zekai, Yang, Zidong, Jiao, Binxing, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Zhang, Xinhao, Zhu, Yibo, Shum, Heung-Yeung, Jiang, Daxin
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Bridging Jensen Gap for Max-Min Group Fairness Optimization in Recommendation
Xu, Chen, Li, Yuxin, Wang, Wenjie, Pang, Liang, Xu, Jun, Chua, Tat-Seng
Group max-min fairness (MMF) is commonly used in fairness-aware recommender systems (RS) as an optimization objective, as it aims to protect marginalized item groups and ensures a fair competition platform. However, our theoretical analysis indicates that integrating MMF constraint violates the assumption of sample independence during optimization, causing the loss function to deviate from linear additivity. Such nonlinearity property introduces the Jensen gap between the model's convergence point and the optimal point if mini-batch sampling is applied. Both theoretical and empirical studies show that as the mini-batch size decreases and the group size increases, the Jensen gap will widen accordingly. Some methods using heuristic re-weighting or debiasing strategies have the potential to bridge the Jensen gap. However, they either lack theoretical guarantees or suffer from heavy computational costs. To overcome these limitations, we first theoretically demonstrate that the MMF-constrained objective can be essentially reformulated as a group-weighted optimization objective. Then we present an efficient and effective algorithm named FairDual, which utilizes a dual optimization technique to minimize the Jensen gap. Our theoretical analysis demonstrates that FairDual can achieve a sub-linear convergence rate to the globally optimal solution and the Jensen gap can be well bounded under a mini-batch sampling strategy with random shuffle. Extensive experiments conducted using six large-scale RS backbone models on three publicly available datasets demonstrate that FairDual outperforms all baselines in terms of both accuracy and fairness. Our data and codes are shared at https://github.com/XuChen0427/FairDual.
Flow-based Conformal Prediction for Multi-dimensional Time Series
Lee, Junghwan, Xu, Chen, Xie, Yao
Conformal prediction for time series presents two key challenges: (1) leveraging sequential correlations in features and non-conformity scores and (2) handling multi-dimensional outcomes. We propose a novel conformal prediction method to address these two key challenges by integrating Transformer and Normalizing Flow. Specifically, the Transformer encodes the historical context of time series, and normalizing flow learns the transformation from the base distribution to the distribution of non-conformity scores conditioned on the encoded historical context. This enables the construction of prediction regions by transforming samples from the base distribution using the learned conditional flow. We ensure the marginal coverage by defining the prediction regions as sets in the transformed space that correspond to a predefined probability mass in the base distribution. The model is trained end-to-end by Flow Matching, avoiding the need for computationally intensive numerical solutions of ordinary differential equations. We demonstrate that our proposed method achieves smaller prediction regions compared to the baselines while satisfying the desired coverage through comprehensive experiments using simulated and real-world time series datasets.
MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods
Xu, Zukang, Yue, Yuxuan, Hu, Xing, Yuan, Zhihang, Jiang, Zixu, Chen, Zhixuan, Yu, Jiangyong, Xu, Chen, Zhou, Sifan, Yang, Dawei
Mamba is an efficient sequence model that rivals Transformers and demonstrates significant potential as a foundational architecture for various tasks. Quantization is commonly used in neural networks to reduce model size and computational latency. However, applying quantization to Mamba remains underexplored, and existing quantization methods, which have been effective for CNN and Transformer models, appear inadequate for Mamba models (e.g., Quarot suffers a 21% accuracy drop on Vim-T We have pioneered the exploration of this issue and identified several key challenges. First, significant outliers are present in gate projections, output projections, and matrix multiplications. Second, Mamba's unique parallel scan further amplifies these outliers, leading to uneven and heavy-tailed data distributions. Third, even with the application of the Hadamard transform, the variance across channels in weights and activations still remains inconsistent. To these ends, we propose MambaQuant, a post-training quantization (PTQ) framework consisting of: 1) Karhunen-Loรจve Transformation (KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse channel distributions. Experiments show that MambaQuant can quantize both weights and activations into 8-bit with less than 1% accuracy loss for Mamba-based vision and language tasks. To the best of our knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba family, paving the way for further advancements in its application. Mamba (Gu & Dao, 2023) is a modern sequence model that competes with the Transformer (Vaswani et al., 2017), particularly noted for its ability to handle extremely long sequences. The model's design is inspired by the Structured State Space model (S4) (Gu et al., 2021) and integrates features from recurrent, convolutional, and continuous-time models to effectively capture long-term periodic dependencies.
MQuant: Unleashing the Inference Potential of Multimodal Large Language Models via Full Static Quantization
Yu, JiangYong, Zhou, Sifan, Yang, Dawei, Wang, Shuo, Li, Shuoyu, Hu, Xing, Xu, Chen, Xu, Zukang, Shu, Changyong, Yuan, Zhihang
Multimodal large language models (MLLMs) have garnered widespread attention due to their ability to understand multimodal input. However, their large parameter sizes and substantial computational demands severely hinder their practical deployment and application.While quantization is an effective way to reduce model size and inference latency, its application to MLLMs remains underexplored. In this paper, we propose MQuant, a post-training quantization (PTQ) framework designed to tackle the unique challenges of multimodal large language models (MLLMs). Conventional quantization often struggles with MLLMs because of (a) high inference latency from large visual token counts, (b) distributional disparities between visual and textual tokens, and (c) extreme outliers introduced by Hadamard-based transformations. To address these issues, MQuant introduces: Modality-Specific Static Quantization (MSQ), assigning distinct static scales for visual vs. textual tokens; Attention-Invariant Flexible Switching (AIFS), reordering tokens to preserve casual attention while eliminating expensive token-wise scale computations; Rotation Magnitude Suppression (RMS), mitigating weight outliers arising from online Hadamard rotations. On five mainstream MLLMs (including Qwen-VL, MiniCPM-V, CogVLM2), MQuant under W4A8 achieves near-floating-point accuracy (<1% degradation) while reducing inference latency by up to 30%, significantly outperforming existing PTQ baselines. Our MQuant effectively bridges the gap for efficient and accurate MLLMs inference in resource-constrained devices. Code will be released.
OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling Transformations for Better Distribution Fitting
Hu, Xing, Cheng, Yuan, Yang, Dawei, Xu, Zukang, Yuan, Zhihang, Yu, Jiangyong, Xu, Chen, Jiang, Zhe, Zhou, Sifan
Post-training quantization (PTQ) has emerged as a widely adopted technique for compressing and accelerating Large Language Models (LLMs). The major challenge in LLM quantization is that uneven and heavy-tailed data distributions can expand the quantization range, thereby reducing bit precision for most values. Recent methods attempt to eliminate outliers and balance inter-channel differences by employing linear transformations; however, they remain heuristic and are often overlook optimizing the data distribution across the entire quantization space.In this paper, we introduce Quantization Space Utilization Rate (QSUR), a novel metric that effectively assesses the quantizability of transformed data by measuring the space utilization of the data in the quantization space. We complement QSUR with mathematical derivations that examine the effects and limitations of various transformations, guiding our development of Orthogonal and Scaling Transformation-based Quantization (OSTQuant). OSQuant employs a learnable equivalent transformation, consisting of an orthogonal transformation and a scaling transformation, to optimize the distributions of weights and activations across the entire quantization space. Futhermore, we propose the KL-Top loss function, designed to mitigate noise during optimization while retaining richer semantic information within the limited calibration data imposed by PTQ. OSTQuant outperforms existing work on various LLMs and benchmarks. In the W4-only setting, it retains 99.5\% of the floating-point accuracy. In the more challenging W4A4KV4 configuration, OSTQuant reduces the performance gap by 32\% on the LLaMA-3-8B model compared to state-of-the-art methods. \href{https://github.com/BrotherHappy/OSTQuant}{https://github.com/BrotherHappy/OSTQuant}.
A Modular-based Strategy for Mitigating Gradient Conflicts in Simultaneous Speech Translation
Liu, Xiaoqian, Du, Yangfan, Wang, Jianjin, Ge, Yuan, Xu, Chen, Xiao, Tong, Chen, Guocheng, Zhu, Jingbo
Simultaneous Speech Translation (SimulST) involves generating target language text while continuously processing streaming speech input, presenting significant real-time challenges. Multi-task learning is often employed to enhance SimulST performance but introduces optimization conflicts between primary and auxiliary tasks, potentially compromising overall efficiency. The existing model-level conflict resolution methods are not well-suited for this task which exacerbates inefficiencies and leads to high GPU memory consumption. To address these challenges, we propose a Modular Gradient Conflict Mitigation (MGCM) strategy that detects conflicts at a finer-grained modular level and resolves them utilizing gradient projection. Experimental results demonstrate that MGCM significantly improves SimulST performance, particularly under medium and high latency conditions, achieving a 0.68 BLEU score gain in offline tasks. Additionally, MGCM reduces GPU memory consumption by over 95\% compared to other conflict mitigation methods, establishing it as a robust solution for SimulST tasks.