Goto

Collaborating Authors

 Xu, Bing


SRLCG: Self-Rectified Large-Scale Code Generation with Multidimensional Chain-of-Thought and Dynamic Backtracking

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized code generation, significantly enhancing developer productivity. However, for a vast number of users with minimal coding knowledge, LLMs provide little support, as they primarily generate isolated code snippets rather than complete, large-scale project code. Without coding expertise, these users struggle to interpret, modify, and iteratively refine the outputs of LLMs, making it impossible to assemble a complete project. To address this issue, we propose Self-Rectified Large-Scale Code Generator (SRLCG), a framework that generates complete multi-file project code from a single prompt. SRLCG employs a novel multidimensional chain-of-thought (CoT) and self-rectification to guide LLMs in generating correct and robust code files, then integrates them into a complete and coherent project using our proposed dynamic backtracking algorithm. Experimental results show that SRLCG generates code 15x longer than DeepSeek-V3, 16x longer than GPT-4, and at least 10x longer than other leading CoT-based baselines. Furthermore, they confirm its improved correctness, robustness, and performance compared to baselines in large-scale code generation.


MuSC: Improving Complex Instruction Following with Multi-granularity Self-Contrastive Training

arXiv.org Artificial Intelligence

Complex instruction-following with elaborate constraints is imperative for Large Language Models (LLMs). While existing methods have constructed data for complex instruction alignment, they all rely on a more advanced model, especially GPT-4, limiting their application. In this paper, we propose a Multi-granularity Self-Contrastive Training (MuSC) framework, to improve the complex instruction alignment without relying on a stronger model. Our method is conducted on both coarse and fine granularity. On coarse-granularity, we construct constraint-aware preference data based on instruction decomposition and recombination. On fine-granularity, we perform token-aware preference optimization with dynamic token-level supervision. Our method is evaluated on open-sourced models, and experiment results show our method achieves significant improvement on both complex and general instruction-following benchmarks, surpassing previous self-alignment methods.


PMoL: Parameter Efficient MoE for Preference Mixing of LLM Alignment

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback (RLHF) has been proven to be an effective method for preference alignment of large language models (LLMs) and is widely used in the post-training process of LLMs. However, RLHF struggles with handling multiple competing preferences. This leads to a decrease in the alignment of LLMs with human preferences. To address this issue, we propose Preference Mixture of LoRAs (PMoL) from the perspective of model architecture, which can adapt to any number of preferences to mix. PMoL combines Mixture of Experts (MoE) and Low Rank Adaptor (LoRA). This architecture is innovatively applied to the research of preference alignment and has achieved significant performance improvement. The expert group soft loss is used to enable MoE with the ability to mix preferences. Through comprehensive evaluation by the reward model and GPT-4o, the experiment results show that PMoL has superior preference mixing capabilities compared to baseline methods. PMoL achieves better preference alignment with lower training costs.


Mitigating the Bias of Large Language Model Evaluation

arXiv.org Artificial Intelligence

Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.


On the Limitations of Fine-tuned Judge Models for LLM Evaluation

arXiv.org Artificial Intelligence

Recently, there has been a growing trend of utilizing Large Language Model (LLM) to evaluate the quality of other LLMs. Many studies have employed proprietary close-source models, especially GPT-4, as the evaluator. Alternatively, other works have fine-tuned judge models based on open-source LLMs as the evaluator. While the fine-tuned judge models are claimed to achieve comparable evaluation capability with GPT-4, in this study, we conduct an empirical study of judge models. Our findings indicate that although the fine-tuned judge models achieve high performance on in-domain test sets, even surpassing GPT-4, they underperform GPT-4 across several dimensions, including generalizability, fairness, aspect-specific evaluation, and scalability. We also reveal that the fine-tuned judge model inherently operates as a task-specific classifier, consequently imposing the limitations. Finally, we propose an effective indicator to measure the reliability of fine-tuned judges, with the aim of maximizing their utility in LLM evaluation.


Navigating Public Sentiment in the Circular Economy through Topic Modelling and Hyperparameter Optimisation

arXiv.org Artificial Intelligence

To advance the circular economy (CE), it is crucial to gain insights into the evolution of public sentiments, cognitive pathways of the masses concerning circular products and digital technology, and recognise the primary concerns. To achieve this, we collected data related to the CE from diverse platforms including Twitter, Reddit, and The Guardian. This comprehensive data collection spanned across three distinct strata of the public: the general public, professionals, and official sources. Subsequently, we utilised three topic models on the collected data. Topic modelling represents a type of data-driven and machine learning approach for text mining, capable of automatically categorising a large number of documents into distinct semantic groups. Simultaneously, these groups are described by topics, and these topics can aid in understanding the semantic content of documents at a high level. However, the performance of topic modelling may vary depending on different hyperparameter values. Therefore, in this study, we proposed a framework for topic modelling with hyperparameter optimisation for CE and conducted a series of systematic experiments to ensure that topic models are set with appropriate hyperparameters and to gain insights into the correlations between the CE and public opinion based on well-established models. The results of this study indicate that concerns about sustainability and economic impact persist across all three datasets. Official sources demonstrate a higher level of engagement with the application and regulation of CE. To the best of our knowledge, this study is pioneering in investigating various levels of public opinions concerning CE through topic modelling with the exploration of hyperparameter optimisation.


Robust Causal Graph Representation Learning against Confounding Effects

arXiv.org Artificial Intelligence

The prevailing graph neural network models have achieved significant progress in graph representation learning. However, in this paper, we uncover an ever-overlooked phenomenon: the pre-trained graph representation learning model tested with full graphs underperforms the model tested with well-pruned graphs. This observation reveals that there exist confounders in graphs, which may interfere with the model learning semantic information, and current graph representation learning methods have not eliminated their influence. To tackle this issue, we propose Robust Causal Graph Representation Learning (RCGRL) to learn robust graph representations against confounding effects. RCGRL introduces an active approach to generate instrumental variables under unconditional moment restrictions, which empowers the graph representation learning model to eliminate confounders, thereby capturing discriminative information that is causally related to downstream predictions. We offer theorems and proofs to guarantee the theoretical effectiveness of the proposed approach. Empirically, we conduct extensive experiments on a synthetic dataset and multiple benchmark datasets. The results demonstrate that compared with state-of-the-art methods, RCGRL achieves better prediction performance and generalization ability.


Empirical Evaluation of Rectified Activations in Convolutional Network

arXiv.org Machine Learning

In this paper we investigate the performance of different types of rectified activation functions in convolutional neural network: standard rectified linear unit (ReLU), leaky rectified linear unit (Leaky ReLU), parametric rectified linear unit (PReLU) and a new randomized leaky rectified linear units (RReLU). We evaluate these activation function on standard image classification task. Our experiments suggest that incorporating a non-zero slope for negative part in rectified activation units could consistently improve the results. Thus our findings are negative on the common belief that sparsity is the key of good performance in ReLU. Moreover, on small scale dataset, using deterministic negative slope or learning it are both prone to overfitting. They are not as effective as using their randomized counterpart. By using RReLU, we achieved 75.68\% accuracy on CIFAR-100 test set without multiple test or ensemble.


Generative Adversarial Nets

Neural Information Processing Systems

We propose a new framework for estimating generative models via adversarial nets, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitatively evaluation of the generated samples.


Generative Adversarial Networks

arXiv.org Machine Learning

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.