Goto

Collaborating Authors

 Xiong, Yizhe


Finedeep: Mitigating Sparse Activation in Dense LLMs via Multi-Layer Fine-Grained Experts

arXiv.org Artificial Intelligence

Large language models have demonstrated exceptional performance across a wide range of tasks. However, dense models usually suffer from sparse activation, where many activation values tend towards zero (i.e., being inactivated). We argue that this could restrict the efficient exploration of model representation space. To mitigate this issue, we propose Finedeep, a deep-layered fine-grained expert architecture for dense models. Our framework partitions the feed-forward neural network layers of traditional dense models into small experts, arranges them across multiple sub-layers. A novel routing mechanism is proposed to determine each expert's contribution. We conduct extensive experiments across various model sizes, demonstrating that our approach significantly outperforms traditional dense architectures in terms of perplexity and benchmark performance while maintaining a comparable number of parameters and floating-point operations. Moreover, we find that Finedeep achieves optimal results when balancing depth and width, specifically by adjusting the number of expert sub-layers and the number of experts per sub-layer. Empirical results confirm that Finedeep effectively alleviates sparse activation and efficiently utilizes representation capacity in dense models.


DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs

arXiv.org Artificial Intelligence

As large language models continue to scale, computational costs and resource consumption have emerged as significant challenges. While existing sparsification methods like pruning reduce computational overhead, they risk losing model knowledge through parameter removal. This paper proposes DSMoE (Dynamic Sparse Mixture-of-Experts), a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks. We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge based on input complexity. Additionally, we introduce a sparsity loss term to balance performance and computational efficiency. Extensive experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches across language modeling and downstream tasks, particularly excelling in generation tasks. Analysis reveals that DSMoE learns distinctive layerwise activation patterns, providing new insights for future MoE architecture design.


UniAttn: Reducing Inference Costs via Softmax Unification for Post-Training LLMs

arXiv.org Artificial Intelligence

Post-training is essential for adapting Large Language Models (LLMs) to real-world applications. Deploying post-trained models faces significant challenges due to substantial memory overhead and noticeable inference latency. Existing work has identified significant redundancies in LLMs and proposed efficient architectures, namely intra-layer KV sharing and cross-layer KV sharing. However, intra-layer KV sharing still results in high inference costs, while cross-layer KV sharing leads to significant performance degradation. As a result, both methods remain suboptimal for post-training pre-trained LLMs. In this paper, we identify that the \texttt{Softmax} operation is a primary bottleneck for LLM inference and discover that it is actually highly redundant during post-training. We propose Softmax \textbf{Uni}fication in \textbf{Att}e\textbf{n}tion (\textbf{UniAttn}), a novel post-training method that unifies Softmax activations across transformer blocks to reduce LLM inference costs. Additionally, UniAttn adopts a linear projection to compensate for the errors induced by Softmax unification. Experiments show that UniAttn matches the performance of standard post-training while significantly reducing inference costs, outperforming existing efficient architectures during post-training. Our code will be available at \url{https://github.com/Bostoncake/UniAttn}.


Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey

arXiv.org Artificial Intelligence

Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction


Breaking the Stage Barrier: A Novel Single-Stage Approach to Long Context Extension for Large Language Models

arXiv.org Artificial Intelligence

Recently, Large language models (LLMs) have revolutionized Natural Language Processing (NLP). Pretrained LLMs, due to limited training context size, struggle with handling long token sequences, limiting their performance on various downstream tasks. Current solutions toward long context modeling often employ multi-stage continual pertaining, which progressively increases the effective context length through several continual pretraining stages. However, those approaches require extensive manual tuning and human expertise. In this paper, we introduce a novel single-stage continual pretraining method, Head-Adaptive Rotary Position Encoding (HARPE), to equip LLMs with long context modeling capabilities while simplifying the training process. Our HARPE leverages different Rotary Position Encoding (RoPE) base frequency values across different attention heads and directly trains LLMs on the target context length. Extensive experiments on 4 language modeling benchmarks, including the latest RULER benchmark, demonstrate that HARPE excels in understanding and integrating long-context tasks with single-stage training, matching and even outperforming existing multi-stage methods. Our results highlight that HARPE successfully breaks the stage barrier for training LLMs with long context modeling capabilities.


LBPE: Long-token-first Tokenization to Improve Large Language Models

arXiv.org Artificial Intelligence

The prevalent use of Byte Pair Encoding (BPE) in Large Language Models (LLMs) facilitates robust handling of subword units and avoids issues of out-of-vocabulary words. Despite its success, a critical challenge persists: long tokens, rich in semantic information, have fewer occurrences in tokenized datasets compared to short tokens, which can result in imbalanced learning issue across different tokens. To address that, we propose LBPE, which prioritizes long tokens during the encoding process. LBPE generates tokens according to their reverse ranks of token length rather than their ranks in the vocabulary, granting longer tokens higher priority during the encoding process. Consequently, LBPE smooths the frequency differences between short and long tokens, and thus mitigates the learning imbalance. Extensive experiments across diverse language modeling tasks demonstrate that LBPE consistently outperforms the original BPE, well demonstrating its effectiveness.


CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts

arXiv.org Artificial Intelligence

Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top $K$ routed experts in an ``addition'' manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a ``multiplication'' manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness.


MaskMoE: Boosting Token-Level Learning via Routing Mask in Mixture-of-Experts

arXiv.org Artificial Intelligence

Scaling model capacity enhances its capabilities but significantly increases computation. Mixture-of-Experts models (MoEs) address this by allowing model capacity to scale without substantially increasing training or inference costs. Despite their promising results, MoE models encounter several challenges. Primarily, the dispersion of training tokens across multiple experts can lead to underfitting, particularly for infrequent tokens. Additionally, while fixed routing mechanisms can mitigate this issue, they compromise on the diversity of representations. In this paper, we propose MaskMoE, a method designed to enhance token-level learning by employing a routing masking technique within the Mixture-of-Experts model. MaskMoE is capable of maintaining representation diversity while achieving more comprehensive training. Experimental results demonstrate that our method outperforms previous dominant Mixture-of-Experts models in both perplexity (PPL) and downstream tasks.


Temporal Scaling Law for Large Language Models

arXiv.org Artificial Intelligence

Recently, Large Language Models (LLMs) have been widely adopted in a wide range of tasks, leading to increasing attention towards the research on how scaling LLMs affects their performance. Existing works, termed Scaling Laws, have discovered that the final test loss of LLMs scales as power-laws with model size, computational budget, and dataset size. However, the temporal change of the test loss of an LLM throughout its pre-training process remains unexplored, though it is valuable in many aspects, such as selecting better hyperparameters \textit{directly} on the target LLM. In this paper, we propose the novel concept of Temporal Scaling Law, studying how the test loss of an LLM evolves as the training steps scale up. In contrast to modeling the test loss as a whole in a coarse-grained manner, we break it down and dive into the fine-grained test loss of each token position, and further develop a dynamic hyperbolic-law. Afterwards, we derive the much more precise temporal scaling law by studying the temporal patterns of the parameters in the dynamic hyperbolic-law. Results on both in-distribution (ID) and out-of-distribution (OOD) validation datasets demonstrate that our temporal scaling law accurately predicts the test loss of LLMs across training steps. Our temporal scaling law has broad practical applications. First, it enables direct and efficient hyperparameter selection on the target LLM, such as data mixture proportions. Secondly, viewing the LLM pre-training dynamics from the token position granularity provides some insights to enhance the understanding of LLM pre-training.


Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal

arXiv.org Artificial Intelligence

Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority.