Xiong, Yifan
Argos: Agentic Time-Series Anomaly Detection with Autonomous Rule Generation via Large Language Models
Gu, Yile, Xiong, Yifan, Mace, Jonathan, Jiang, Yuting, Hu, Yigong, Kasikci, Baris, Cheng, Peng
Observability in cloud infrastructure is critical for service providers, driving the widespread adoption of anomaly detection systems for monitoring metrics. However, existing systems often struggle to simultaneously achieve explainability, reproducibility, and autonomy, which are three indispensable properties for production use. We introduce Argos, an agentic system for detecting time-series anomalies in cloud infrastructure by leveraging large language models (LLMs). Argos proposes to use explainable and reproducible anomaly rules as intermediate representation and employs LLMs to autonomously generate such rules. The system will efficiently train error-free and accuracy-guaranteed anomaly rules through multiple collaborative agents and deploy the trained rules for low-cost online anomaly detection. Through evaluation results, we demonstrate that Argos outperforms state-of-the-art methods, increasing $F_1$ scores by up to $9.5\%$ and $28.3\%$ on public anomaly detection datasets and an internal dataset collected from Microsoft, respectively.
FP8-LM: Training FP8 Large Language Models
Peng, Houwen, Wu, Kan, Wei, Yixuan, Zhao, Guoshuai, Yang, Yuxiang, Liu, Ze, Xiong, Yifan, Yang, Ziyue, Ni, Bolin, Hu, Jingcheng, Li, Ruihang, Zhang, Miaosen, Li, Chen, Ning, Jia, Wang, Ruizhe, Zhang, Zheng, Liu, Shuguang, Chau, Joe, Hu, Han, Cheng, Peng
In this paper, we explore FP8 low-bit data formats for efficient training of large language models (LLMs). Our key insight is that most variables, such as gradients and optimizer states, in LLM training can employ low-precision data formats without compromising model accuracy and requiring no changes to hyper-parameters. Specifically, we propose a new FP8 automatic mixed-precision framework for training LLMs. This framework offers three levels of FP8 utilization to streamline mixed-precision and distributed parallel training for LLMs. It gradually incorporates 8-bit gradients, optimizer states, and distributed learning in an incremental manner. Experiment results show that, during the training of GPT-175B model on H100 GPU platform, our FP8 mixed-precision training framework not only achieved a remarkable 39% reduction in real memory usage but also ran 75% faster than the widely adopted BF16 framework (i.e., Megatron-LM), surpassing the speed of Nvidia Transformer Engine by 37%. This largely reduces the training costs for large foundation models. Furthermore, our FP8 mixed-precision training methodology is generic. It can be seamlessly applied to other tasks such as LLM instruction tuning and reinforcement learning with human feedback, offering savings in fine-tuning expenses. Our FP8 low-precision training framework is open-sourced at {https://github.com/Azure/MS-AMP}{aka.ms/MS.AMP}.
Tutel: Adaptive Mixture-of-Experts at Scale
Hwang, Changho, Cui, Wei, Xiong, Yifan, Yang, Ziyue, Liu, Ze, Hu, Han, Wang, Zilong, Salas, Rafael, Jose, Jithin, Ram, Prabhat, Chau, Joe, Cheng, Peng, Yang, Fan, Yang, Mao, Xiong, Yongqiang
Sparsely-gated mixture-of-experts (MoE) has been widely adopted to scale deep learning models to trillion-plus parameters with fixed computational cost. The algorithmic performance of MoE relies on its token routing mechanism that forwards each input token to the right sub-models or experts. While token routing dynamically determines the amount of expert workload at runtime, existing systems suffer inefficient computation due to their static execution, namely static parallelism and pipelining, which does not adapt to the dynamic workload. We present Flex, a highly scalable stack design and implementation for MoE with dynamically adaptive parallelism and pipelining. Flex designs an identical layout for distributing MoE model parameters and input data, which can be leveraged by all possible parallelism or pipelining methods without any mathematical inequivalence or tensor migration overhead. This enables adaptive parallelism/pipelining optimization at zero cost during runtime. Based on this key design, Flex also implements various MoE acceleration techniques. Aggregating all techniques, Flex finally delivers huge speedup at any scale -- 4.96x and 5.75x speedup of a single MoE layer over 16 and 2,048 A100 GPUs, respectively, over the previous state-of-the-art. Our evaluation shows that Flex efficiently and effectively runs a real-world MoE-based model named SwinV2-MoE, built upon Swin Transformer V2, a state-of-the-art computer vision architecture. On efficiency, Flex accelerates SwinV2-MoE, achieving up to 1.55x and 2.11x speedup in training and inference over Fairseq, respectively. On effectiveness, the SwinV2-MoE model achieves superior accuracy in both pre-training and down-stream computer vision tasks such as COCO object detection than the counterpart dense model, indicating the readiness of Flex for end-to-end real-world model training and inference.