Xingguo Li
Deep Hyperspherical Learning
Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song
On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning
Xingguo Li, Lin Yang, Jason Ge, Jarvis Haupt, Tong Zhang, Tuo Zhao
We propose a DC proximal Newton algorithm for solving nonconvex regularized sparse learning problems in high dimensions. Our proposed algorithm integrates the proximal newton algorithm with multi-stage convex relaxation based on the difference of convex (DC) programming, and enjoys both strong computational and statistical guarantees. Specifically, by leveraging a sophisticated characterization of sparse modeling structures (i.e., local restricted strong convexity and Hessian smoothness), we prove that within each stage of convex relaxation, our proposed algorithm achieves (local) quadratic convergence, and eventually obtains a sparse approximate local optimum with optimal statistical properties after only a few convex relaxations. Numerical experiments are provided to support our theory.
ZO-AdaMM: Zeroth-Order Adaptive Momentum Method for Black-Box Optimization
Xiangyi Chen, Sijia Liu, Kaidi Xu, Xingguo Li, Xue Lin, Mingyi Hong, David Cox
The adaptive momentum method (AdaMM), which uses past gradients to update descent directions and learning rates simultaneously, has become one of the most popular first-order optimization methods for solving machine learning problems. However, AdaMM is not suited for solving black-box optimization problems, where explicit gradient forms are difficult or infeasible to obtain. In this paper, we propose a zeroth-order AdaMM (ZO-AdaMM) algorithm, that generalizes AdaMM to the gradient-free regime. We show that the convergence rate of ZO-AdaMM for both convex and nonconvex optimization is roughly a factor ofO( d) worse than that of the first-order AdaMM algorithm, where d is problem size. In particular, we provide a deep understanding on why Mahalanobis distance matters in convergence of ZO-AdaMM and other AdaMM-type methods. As a byproduct, our analysis makes the first step toward understanding adaptive learning rate methods for nonconvex constrained optimization. Furthermore, we demonstrate two applications, designing per-image and universal adversarial attacks from blackbox neural networks, respectively. We perform extensive experiments on ImageNet and empirically show that ZO-AdaMM converges much faster to a solution of high accuracy compared with6state-of-the-art ZO optimization methods.
Deep Hyperspherical Learning
Weiyang Liu, Yan-Ming Zhang, Xingguo Li, Zhiding Yu, Bo Dai, Tuo Zhao, Le Song