Goto

Collaborating Authors

 Xing, Jiarong


S*: Test Time Scaling for Code Generation

arXiv.org Artificial Intelligence

Increasing test-time compute for LLMs shows promise across domains but remains underexplored in code generation, despite extensive study in math. In this paper, we propose S*, the first hybrid test-time scaling framework that substantially improves the coverage and selection accuracy of generated code. S* extends the existing parallel scaling paradigm with sequential scaling to push performance boundaries. It further leverages a novel selection mechanism that adaptively generates distinguishing inputs for pairwise comparison, combined with execution-grounded information to robustly identify correct solutions. We evaluate across 12 Large Language Models and Large Reasoning Model and show: (1) S* consistently improves performance across model families and sizes, enabling a 3B model to outperform GPT-4o-mini; (2) S* enables non-reasoning models to surpass reasoning models - GPT-4o-mini with S* outperforms o1-preview by 3.7% on LiveCodeBench; (3) S* further boosts state-of-the-art reasoning models - DeepSeek-R1-Distill-Qwen-32B with S* achieves 85.7% on LiveCodeBench, approaching o1 (high) at 88.5%. Code will be available under https://github.com/NovaSky-AI/SkyThought.


Disaggregating Embedding Recommendation Systems with FlexEMR

arXiv.org Artificial Intelligence

Efficiently serving embedding-based recommendation (EMR) models remains a significant challenge due to their increasingly large memory requirements. Today's practice splits the model across many monolithic servers, where a mix of GPUs, CPUs, and DRAM is provisioned in fixed proportions. This approach leads to suboptimal resource utilization and increased costs. Disaggregating embedding operations from neural network inference is a promising solution but raises novel networking challenges. In this paper, we discuss the design of FlexEMR for optimized EMR disaggregation. FlexEMR proposes two sets of techniques to tackle the networking challenges: Leveraging the temporal and spatial locality of embedding lookups to reduce data movement over the network, and designing an optimized multi-threaded RDMA engine for concurrent lookup subrequests. We outline the design space for each technique and present initial results from our early prototype.


BlendServe: Optimizing Offline Inference for Auto-regressive Large Models with Resource-aware Batching

arXiv.org Artificial Intelligence

Offline batch inference, which leverages the flexibility of request batching to achieve higher throughput and lower costs, is becoming more popular for latency-insensitive applications. Meanwhile, recent progress in model capability and modality makes requests more diverse in compute and memory demands, creating unique opportunities for throughput improvement by resource overlapping. However, a request schedule that maximizes resource overlapping can conflict with the schedule that maximizes prefix sharing, a widely-used performance optimization, causing sub-optimal inference throughput. We present BlendServe, a system that maximizes resource utilization of offline batch inference by combining the benefits of resource overlapping and prefix sharing using a resource-aware prefix tree. BlendServe exploits the relaxed latency requirements in offline batch inference to reorder and overlap requests with varied resource demands while ensuring high prefix sharing. We evaluate BlendServe on a variety of synthetic multi-modal workloads and show that it provides up to $1.44\times$ throughput boost compared to widely-used industry standards, vLLM and SGLang.


Bolt: Bridging the Gap between Auto-tuners and Hardware-native Performance

arXiv.org Artificial Intelligence

Today's auto-tuners (e.g., AutoTVM, Ansor) generate efficient tensor programs by navigating a large search space to identify effective implementations, but they do so with opaque hardware details. Thus, their performance could fall behind that of hardware-native libraries (e.g., cuBLAS, cuDNN), which are hand-optimized by device vendors to extract high performance. On the other hand, these vendor libraries have a fixed set of supported functions and lack the customization and automation support afforded by auto-tuners. Bolt is based on the recent trend that vendor libraries are increasingly modularized and reconfigurable via declarative control (e.g., CUTLASS). It enables a novel approach that bridges this gap and achieves the best of both worlds, via hardware-native templated search. Bolt provides new opportunities to rethink end-to-end tensor optimizations at the graph, operator, and model levels. Bolt demonstrates this concept by prototyping on a popular auto-tuner in TVM and a class of widely-used platforms (i.e., NVIDIA GPUs)--both in large deployment in our production environment. Bolt improves the inference speed of common convolutional neural networks by 2.5x on average over the state of the art, and it auto-tunes these models within 20 minutes. Example auto-tuners like AutoTVM (Chen Ansor (Zheng et al., 2020a) only achieves 20% of cuBLAS et al., 2018b) and Ansor (Zheng et al., 2020a) infer hardware performance for FP16 GEMMs on NVIDIA Tesla T4 GPUs cost models from afar, by executing sample implementations (see Figure 1 for more details). Building on the inferred cost models, auto-tuners take tensor Related, opaque device models also lead to a prolonged programs as inputs, and navigates a large search space to auto-tuning time, as the search process is less informed by select effective transformations for high performance.