Goto

Collaborating Authors

 Xin, Xin


LLMPopcorn: An Empirical Study of LLMs as Assistants for Popular Micro-video Generation

arXiv.org Artificial Intelligence

Popular Micro-videos, dominant on platforms like TikTok and YouTube, hold significant commercial value. The rise of high-quality AI-generated content has spurred interest in AI-driven micro-video creation. However, despite the advanced capabilities of large language models (LLMs) like ChatGPT and DeepSeek in text generation and reasoning, their potential to assist the creation of popular micro-videos remains largely unexplored. In this paper, we conduct an empirical study on LLM-assisted popular micro-video generation (LLMPopcorn). Specifically, we investigate the following research questions: (i) How can LLMs be effectively utilized to assist popular micro-video generation? (ii) To what extent can prompt-based enhancements optimize the LLM-generated content for higher popularity? (iii) How well do various LLMs and video generators perform in the popular micro-video generation task? By exploring these questions, we show that advanced LLMs like DeepSeek-V3 enable micro-video generation to achieve popularity comparable to human-created content. Prompt enhancements further boost popularity, and benchmarking highlights DeepSeek-V3 and DeepSeek-R1 among LLMs, while LTX-Video and HunyuanVideo lead in video generation. This pioneering work advances AI-assisted micro-video creation, uncovering new research opportunities. We will release the code and datasets to support future studies.


Reverse Region-to-Entity Annotation for Pixel-Level Visual Entity Linking

arXiv.org Artificial Intelligence

Visual Entity Linking (VEL) is a crucial task for achieving fine-grained visual understanding, matching objects within images (visual mentions) to entities in a knowledge base. Previous VEL tasks rely on textual inputs, but writing queries for complex scenes can be challenging. Visual inputs like clicks or bounding boxes offer a more convenient alternative. Therefore, we propose a new task, Pixel-Level Visual Entity Linking (PL-VEL), which uses pixel masks from visual inputs to refer to objects, supplementing reference methods for VEL. To facilitate research on this task, we have constructed the MaskOVEN-Wiki dataset through an entirely automatic reverse region-entity annotation framework. This dataset contains over 5 million annotations aligning pixel-level regions with entity-level labels, which will advance visual understanding towards fine-grained. Moreover, as pixel masks correspond to semantic regions in an image, we enhance previous patch-interacted attention with region-interacted attention by a visual semantic tokenization approach. Manual evaluation results indicate that the reverse annotation framework achieved a 94.8% annotation success rate. Experimental results show that models trained on this dataset improved accuracy by 18 points compared to zero-shot models. Additionally, the semantic tokenization method achieved a 5-point accuracy improvement over the trained baseline.


PSL: Rethinking and Improving Softmax Loss from Pairwise Perspective for Recommendation

arXiv.org Artificial Intelligence

Softmax Loss (SL) is widely applied in recommender systems (RS) and has demonstrated effectiveness. This work analyzes SL from a pairwise perspective, revealing two significant limitations: 1) the relationship between SL and conventional ranking metrics like DCG is not sufficiently tight; 2) SL is highly sensitive to false negative instances. Our analysis indicates that these limitations are primarily due to the use of the exponential function. To address these issues, this work extends SL to a new family of loss functions, termed Pairwise Softmax Loss (PSL), which replaces the exponential function in SL with other appropriate activation functions. While the revision is minimal, we highlight three merits of PSL: 1) it serves as a tighter surrogate for DCG with suitable activation functions; 2) it better balances data contributions; and 3) it acts as a specific BPR loss enhanced by Distributionally Robust Optimization (DRO).


MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter

arXiv.org Artificial Intelligence

Parameter-Efficient Fine-tuning (PEFT) facilitates the fine-tuning of Large Language Models (LLMs) under limited resources. However, the fine-tuning performance with PEFT on complex, knowledge-intensive tasks is limited due to the constrained model capacity, which originates from the limited number of additional trainable parameters. To overcome this limitation, we introduce a novel mechanism that fine-tunes LLMs with adapters of larger size yet memory-efficient. This is achieved by leveraging the inherent activation sparsity in the Feed-Forward Networks (FFNs) of LLMs and utilizing the larger capacity of Central Processing Unit (CPU) memory compared to Graphics Processing Unit (GPU). We store and update the parameters of larger adapters on the CPU. Moreover, we employ a Mixture of Experts (MoE)-like architecture to mitigate unnecessary CPU computations and reduce the communication volume between the GPU and CPU. This is particularly beneficial over the limited bandwidth of PCI Express (PCIe). Our method can achieve fine-tuning results comparable to those obtained with larger memory capacities, even when operating under more limited resources such as a 24GB memory single GPU setup, with acceptable loss in training efficiency. Our codes are available at https://github.com/CURRENTF/MEFT.


Offline Trajectory Generalization for Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Offline reinforcement learning (RL) aims to learn policies from static datasets of previously collected trajectories. Existing methods for offline RL either constrain the learned policy to the support of offline data or utilize model-based virtual environments to generate simulated rollouts. However, these methods suffer from (i) poor generalization to unseen states; and (ii) trivial improvement from low-qualified rollout simulation. In this paper, we propose offline trajectory generalization through world transformers for offline reinforcement learning (OTTO). Specifically, we use casual Transformers, a.k.a. World Transformers, to predict state dynamics and the immediate reward. Then we propose four strategies to use World Transformers to generate high-rewarded trajectory simulation by perturbing the offline data. Finally, we jointly use offline data with simulated data to train an offline RL algorithm. OTTO serves as a plug-in module and can be integrated with existing offline RL methods to enhance them with better generalization capability of transformers and high-rewarded data augmentation. Conducting extensive experiments on D4RL benchmark datasets, we verify that OTTO significantly outperforms state-of-the-art offline RL methods.


On the Effectiveness of Unlearning in Session-Based Recommendation

arXiv.org Artificial Intelligence

Session-based recommendation predicts users' future interests from previous interactions in a session. Despite the memorizing of historical samples, the request of unlearning, i.e., to remove the effect of certain training samples, also occurs for reasons such as user privacy or model fidelity. However, existing studies on unlearning are not tailored for the session-based recommendation. On the one hand, these approaches cannot achieve satisfying unlearning effects due to the collaborative correlations and sequential connections between the unlearning item and the remaining items in the session. On the other hand, seldom work has conducted the research to verify the unlearning effectiveness in the session-based recommendation scenario. In this paper, we propose SRU, a session-based recommendation unlearning framework, which enables high unlearning efficiency, accurate recommendation performance, and improved unlearning effectiveness in session-based recommendation. Specifically, we first partition the training sessions into separate sub-models according to the similarity across the sessions, then we utilize an attention-based aggregation layer to fuse the hidden states according to the correlations between the session and the centroid of the data in the sub-model. To improve the unlearning effectiveness, we further propose three extra data deletion strategies, including collaborative extra deletion (CED), neighbor extra deletion (NED), and random extra deletion (RED). Besides, we propose an evaluation metric that measures whether the unlearning sample can be inferred after the data deletion to verify the unlearning effectiveness. We implement SRU with three representative session-based recommendation models and conduct experiments on three benchmark datasets. Experimental results demonstrate the effectiveness of our methods.


Confucius: Iterative Tool Learning from Introspection Feedback by Easy-to-Difficult Curriculum

arXiv.org Artificial Intelligence

Augmenting large language models (LLMs) with external tools has emerged as a promising approach to extending the capability of LLMs. Although some works employ open-source LLMs for the tool learning task, most of them are trained in a controlled environment in which LLMs only learn to execute the human-provided tools. However, selecting proper tools from the large toolset is also a crucial ability for the tool learning model to be applied in real-world applications. Existing methods usually directly employ self-instruction methods to train the model, which ignores differences in tool complexity. In this paper, we propose the Confucius, a novel tool learning framework to train LLM to use complicated tools in real-world scenarios, which contains two main phases: (1) We first propose a multi-stage learning method to teach the LLM to use various tools from an easy-to-difficult curriculum; (2) thenceforth, we propose the Iterative Self-instruct from Introspective Feedback (ISIF) to dynamically construct the dataset to improve the ability to use the complicated tool. Extensive experiments conducted on both controlled and real-world settings demonstrate the superiority of our tool learning framework in the real-world application scenarios compared to both tuning-free (e.g. ChatGPT, Claude) and tuning-based baselines (e.g. GPT4Tools).


Label Denoising through Cross-Model Agreement

arXiv.org Artificial Intelligence

Learning from corrupted labels is very common in real-world machine-learning applications. Memorizing such noisy labels could affect the learning of the model, leading to sub-optimal performances. In this work, we propose a novel framework to learn robust machine-learning models from noisy labels. Through an empirical study, we find that different models make relatively similar predictions on clean examples, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose \em denoising with cross-model agreement \em (DeCA) which aims to minimize the KL-divergence between the true label distributions parameterized by two machine learning models while maximizing the likelihood of data observation. We employ the proposed DeCA on both the binary label scenario and the multiple label scenario. For the binary label scenario, we select implicit feedback recommendation as the downstream task and conduct experiments with four state-of-the-art recommendation models on four datasets. For the multiple-label scenario, the downstream application is image classification on two benchmark datasets. Experimental results demonstrate that the proposed methods significantly improve the model performance compared with normal training and other denoising methods on both binary and multiple-label scenarios.


Distributed end-effector formation control for mixed fully- and under-actuated manipulators with flexible joints

arXiv.org Artificial Intelligence

The presence of faulty or underactuated manipulators can disrupt the end-effector formation keeping of a team of manipulators. Based on two-link planar manipulators, we investigate this end-effector formation keeping problem for mixed fully- and under-actuated manipulators with flexible joints. In this case, the underactuated manipulators can comprise of active-passive (AP) manipulators, passive-active (PA) manipulators, or a combination thereof. We propose distributed control laws for the different types of manipulators to achieve and maintain the desired formation shape of the end-effectors. It is achieved by assigning virtual springs to the end-effectors for the fully-actuated ones and to the virtual end-effectors for the under-actuated ones. We study further the set of all desired and reachable shapes for the networked manipulators' end-effectors. Finally, we validate our analysis via numerical simulations.


Distributed formation control of end-effector of mixed planar fully- and under-actuated manipulators

arXiv.org Artificial Intelligence

This paper addresses the problem of end-effector formation control for a mixed group of two-link manipulators moving in a horizontal plane that comprises of fully-actuated manipulators and underactuated manipulators with only the second joint being actuated (referred to as the passive-active (PA) manipulators). The problem is solved by extending the distributed end-effector formation controller for the fully-actuated manipulator to the PA manipulator moving in a horizontal plane by using its integrability. This paper presents stability analysis of the closed-loop systems under a given necessary condition, and we prove that the manipulators' end-effector converge to the desired formation shape. The proposed method is validated by simulations.