Xiaodan Liang
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation
Yuan Li, Xiaodan Liang, Zhiting Hu, Eric P. Xing
Generating long and coherent reports to describe medical images poses challenges to bridging visual patterns with informative human linguistic descriptions. We propose a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent) which reconciles traditional retrieval-based approaches populated with human prior knowledge, with modern learning-based approaches to achieve structured, robust, and diverse report generation. HRGR-Agent employs a hierarchical decisionmaking procedure. For each sentence, a high-level retrieval policy module chooses to either retrieve a template sentence from an off-the-shelf template database, or invoke a low-level generation module to generate a new sentence. HRGR-Agent is updated via reinforcement learning, guided by sentence-level and word-level rewards. Experiments show that our approach achieves the state-of-the-art results on two medical report datasets, generating well-balanced structured sentences with robust coverage of heterogeneous medical report contents. In addition, our model achieves the highest detection precision of medical abnormality terminologies, and improved human evaluation performance.
Deep Generative Models with Learnable Knowledge Constraints
Zhiting Hu, Zichao Yang, Russ R. Salakhutdinov, LIANHUI Qin, Xiaodan Liang, Haoye Dong, Eric P. Xing
The broad set of deep generative models (DGMs) has achieved remarkable advances. However, it is often difficult to incorporate rich structured domain knowledge with the end-to-end DGMs. Posterior regularization (PR) offers a principled framework to impose structured constraints on probabilistic models, but has limited applicability to the diverse DGMs that can lack a Bayesian formulation or even explicit density evaluation. PR also requires constraints to be fully specified a priori, which is impractical or suboptimal for complex knowledge with learnable uncertain parts. In this paper, we establish mathematical correspondence between PR and reinforcement learning (RL), and, based on the connection, expand PR to learn constraints as the extrinsic reward in RL. The resulting algorithm is modelagnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with the model jointly. Experiments on human image generation and templated sentence generation show models with learned knowledge constraints by our algorithm greatly improve over base generative models.
Symbolic Graph Reasoning Meets Convolutions
Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing
Hybrid Knowledge Routed Modules for Large-scale Object Detection
ChenHan Jiang, Hang Xu, Xiaodan Liang, Liang Lin
The dominant object detection approaches treat the recognition of each region separately and overlook crucial semantic correlations between objects in one scene. This paradigm leads to substantial performance drop when facing heavy long-tail problems, where very few samples are available for rare classes and plenty of confusing categories exists. We exploit diverse human commonsense knowledge for reasoning over large-scale object categories and reaching semantic coherency within one image. Particularly, we present Hybrid Knowledge Routed Modules (HKRM) that incorporates the reasoning routed by two kinds of knowledge forms: an explicit knowledge module for structured constraints that are summarized with linguistic knowledge (e.g.
Heterogeneous Graph Learning for Visual Commonsense Reasoning
Weijiang Yu, Jingwen Zhou, Weihao Yu, Xiaodan Liang, Nong Xiao
Visual commonsense reasoning task aims at leading the research field into solving cognition-level reasoning with the ability of predicting correct answers and meanwhile providing convincing reasoning paths, resulting in three sub-tasks i.e., Q A, QA R and Q AR. It poses great challenges over the proper semantic alignment between vision and linguistic domains and knowledge reasoning to generate persuasive reasoning paths. Existing works either resort to a powerful end-to-end network that cannot produce interpretable reasoning paths or solely explore intra-relationship of visual objects (homogeneous graph) while ignoring the cross-domain semantic alignment among visual concepts and linguistic words. In this paper, we propose a new Heterogeneous Graph Learning (HGL) framework for seamlessly integrating the intra-graph and inter-graph reasoning in order to bridge vision and language domain. Our HGL consists of a primal vision-to-answer heterogeneous graph (VAHG) module and a dual question-to-answer heterogeneous graph (QAHG) module to interactively refine reasoning paths for semantic agreement. Moreover, our HGL integrates a contextual voting module to exploit long-range visual context for better global reasoning. Experiments on the large-scale Visual Commonsense Reasoning benchmark demonstrate the superior performance of our proposed modules on three tasks (improving 5% accuracy on Q A, 3.5% on QA R, 5.8% on Q AR)
Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis
Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, Jian Yin
Despite remarkable advances in image synthesis research, existing works often fail in manipulating images under the context of large geometric transformations. Synthesizing person images conditioned on arbitrary poses is one of the most representative examples where the generation quality largely relies on the capability of identifying and modeling arbitrary transformations on different body parts. Current generative models are often built on local convolutions and overlook the key challenges (e.g.
Heterogeneous Graph Learning for Visual Commonsense Reasoning
Weijiang Yu, Jingwen Zhou, Weihao Yu, Xiaodan Liang, Nong Xiao
Visual commonsense reasoning task aims at leading the research field into solving cognition-level reasoning with the ability of predicting correct answers and meanwhile providing convincing reasoning paths, resulting in three sub-tasks i.e., Q A, QA R and Q AR. It poses great challenges over the proper semantic alignment between vision and linguistic domains and knowledge reasoning to generate persuasive reasoning paths. Existing works either resort to a powerful end-to-end network that cannot produce interpretable reasoning paths or solely explore intra-relationship of visual objects (homogeneous graph) while ignoring the cross-domain semantic alignment among visual concepts and linguistic words. In this paper, we propose a new Heterogeneous Graph Learning (HGL) framework for seamlessly integrating the intra-graph and inter-graph reasoning in order to bridge vision and language domain. Our HGL consists of a primal vision-to-answer heterogeneous graph (VAHG) module and a dual question-to-answer heterogeneous graph (QAHG) module to interactively refine reasoning paths for semantic agreement. Moreover, our HGL integrates a contextual voting module to exploit long-range visual context for better global reasoning. Experiments on the large-scale Visual Commonsense Reasoning benchmark demonstrate the superior performance of our proposed modules on three tasks (improving 5% accuracy on Q A, 3.5% on QA R, 5.8% on Q AR)
Tree-Structured Reinforcement Learning for Sequential Object Localization
Zequn Jie, Xiaodan Liang, Jiashi Feng, Xiaojie Jin, Wen Lu, Shuicheng Yan
Existing object proposal algorithms usually search for possible object regions over multiple locations and scales separately, which ignore the interdependency among different objects and deviate from the human perception procedure. To incorporate global interdependency between objects into object localization, we propose an effective Tree-structured Reinforcement Learning (Tree-RL) approach to sequentially search for objects by fully exploiting both the current observation and historical search paths. The Tree-RL approach learns multiple searching policies through maximizing the long-term reward that reflects localization accuracies over all the objects. Starting with taking the entire image as a proposal, the Tree-RL approach allows the agent to sequentially discover multiple objects via a tree-structured traversing scheme. Allowing multiple near-optimal policies, Tree-RL offers more diversity in search paths and is able to find multiple objects with a single feedforward pass. Therefore, Tree-RL can better cover different objects with various scales which is quite appealing in the context of object proposal. Experiments on PASCAL VOC 2007 and 2012 validate the effectiveness of the Tree-RL, which can achieve comparable recalls with current object proposal algorithms via much fewer candidate windows.
Structured Generative Adversarial Networks
Zhijie Deng, Hao Zhang, Xiaodan Liang, Luona Yang, Shizhen Xu, Jun Zhu, Eric P. Xing
We study the problem of conditional generative modeling based on designated semantics or structures. Existing models that build conditional generators either require massive labeled instances as supervision or are unable to accurately control the semantics of generated samples. We propose structured generative adversarial networks (SGANs) for semi-supervised conditional generative modeling. SGAN assumes the data x is generated conditioned on two independent latent variables: y that encodes the designated semantics, and z that contains other factors of variation. To ensure disentangled semantics in y and z, SGAN builds two collaborative games in the hidden space to minimize the reconstruction error of y and z, respectively. Training SGAN also involves solving two adversarial games that have their equilibrium concentrating at the true joint data distributions p(x, z) and p(x, y), avoiding distributing the probability mass diffusely over data space that MLE-based methods may suffer. We assess SGAN by evaluating its trained networks, and its performance on downstream tasks. We show that SGAN delivers a highly controllable generator, and disentangled representations; it also establishes start-of-the-art results across multiple datasets when applied for semi-supervised image classification (1.27%, 5.73%, 17.26% error rates on MNIST, SVHN and CIFAR-10 using 50, 1000 and 4000 labels, respectively). Benefiting from the separate modeling of y and z, SGAN can generate images with high visual quality and strictly following the designated semantic, and can be extended to a wide spectrum of applications, such as style transfer.
Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation
Yuan Li, Xiaodan Liang, Zhiting Hu, Eric P. Xing
Generating long and coherent reports to describe medical images poses challenges to bridging visual patterns with informative human linguistic descriptions. We propose a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent) which reconciles traditional retrieval-based approaches populated with human prior knowledge, with modern learning-based approaches to achieve structured, robust, and diverse report generation. HRGR-Agent employs a hierarchical decisionmaking procedure. For each sentence, a high-level retrieval policy module chooses to either retrieve a template sentence from an off-the-shelf template database, or invoke a low-level generation module to generate a new sentence. HRGR-Agent is updated via reinforcement learning, guided by sentence-level and word-level rewards. Experiments show that our approach achieves the state-of-the-art results on two medical report datasets, generating well-balanced structured sentences with robust coverage of heterogeneous medical report contents. In addition, our model achieves the highest detection precision of medical abnormality terminologies, and improved human evaluation performance.