Goto

Collaborating Authors

 Xiao, Xinyan


UGen: Unified Autoregressive Multimodal Model with Progressive Vocabulary Learning

arXiv.org Artificial Intelligence

We introduce UGen, a unified autoregressive multimodal model that demonstrates strong performance across text processing, image understanding, and image generation tasks simultaneously. UGen converts both texts and images into discrete token sequences and utilizes a single transformer to generate them uniformly in an autoregressive manner. To address the challenges associated with unified multimodal learning, UGen is trained using a novel mechanism, namely progressive vocabulary learning. In this process, visual token IDs are incrementally activated and integrated into the training phase, ultimately enhancing the effectiveness of unified multimodal learning. Experiments on comprehensive text and image tasks show that UGen achieves a significant overall performance improvement of 13.3% compared to the vanilla unified autoregressive method, and it also delivers competitive results across all tasks against several task-specific models.


BiDeV: Bilateral Defusing Verification for Complex Claim Fact-Checking

arXiv.org Artificial Intelligence

Complex claim fact-checking performs a crucial role in disinformation detection. Moreover, evidence redundancy, where nonessential information complicates the verification process, remains a significant issue. To tackle these limitations, we propose Bilateral De fusing V erification ( BiDeV), a novel fact-checking working-flow framework integrating multiple role-played LLMs to mimic the human-expert fact-checking process. BiDeV consists of two main modules: V agueness Defusing identifies latent information and resolves complex relations to simplify the claim, and Redundancy Defusing eliminates redundant content to enhance the evidence quality. Extensive experimental results on two widely used challenging fact-checking benchmarks (Hover and Feverous-s) demonstrate that our BiDeV can achieve the best performance under both gold and open settings. This highlights the effectiveness of BiDeV in handling complex claims and ensuring precise fact-checking 1 . Introduction Fact-checking is crucial for claim verification by collecting relevant evidence and determining their veracity (Guo, Schlichtkrull, and Vlachos 2022).


Investigating Inference-time Scaling for Chain of Multi-modal Thought: A Preliminary Study

arXiv.org Artificial Intelligence

Recently, inference-time scaling of chain-of-thought (CoT) has been demonstrated as a promising approach for addressing multi-modal reasoning tasks. While existing studies have predominantly centered on text-based thinking, the integration of both visual and textual modalities within the reasoning process remains unexplored. In this study, we pioneer the exploration of inference-time scaling with multi-modal thought, aiming to bridge this gap. To provide a comprehensive analysis, we systematically investigate popular sampling-based and tree search-based inference-time scaling methods on 10 challenging tasks spanning various domains. Besides, we uniformly adopt a consistency-enhanced verifier to ensure effective guidance for both methods across different thought paradigms. Results show that multi-modal thought promotes better performance against conventional text-only thought, and blending the two types of thought fosters more diverse thinking. Despite these advantages, multi-modal thoughts necessitate higher token consumption for processing richer visual inputs, which raises concerns in practical applications. We hope that our findings on the merits and drawbacks of this research line will inspire future works in the field.


Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training

arXiv.org Artificial Intelligence

Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with legible visual texts. Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese text, but their development shows promising potential. In this paper, we propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese. We first conduct a preliminary study revealing that Byte Pair Encoding (BPE) tokenization and the insufficient learning of cross-attention modules restrict the performance of the backbone models. Based on these observations, we make the following improvements: (1) We design a mixed granularity input strategy to provide more suitable text representations; (2) We propose to augment the conventional training objective with three glyph-aware training losses, which enhance the learning of cross-attention modules and encourage the model to focus on visual texts. Through experiments, we demonstrate that our methods can effectively empower backbone models to generate semantic relevant, aesthetically appealing, and accurate visual text images, while maintaining their fundamental image generation quality.


S$^2$AG-Vid: Enhancing Multi-Motion Alignment in Video Diffusion Models via Spatial and Syntactic Attention-Based Guidance

arXiv.org Artificial Intelligence

Recent advancements in text-to-video (T2V) generation using diffusion models have garnered significant attention. However, existing T2V models primarily focus on simple scenes featuring a single object performing a single motion. Challenges arise in scenarios involving multiple objects with distinct motions, often leading to incorrect video-text alignment between subjects and their corresponding motions. To address this challenge, we propose \textbf{S$^2$AG-Vid}, a training-free inference-stage optimization method that improves the alignment of multiple objects with their corresponding motions in T2V models. S$^2$AG-Vid initially applies a spatial position-based, cross-attention (CA) constraint in the early stages of the denoising process, facilitating multiple nouns distinctly attending to the correct subject regions. To enhance the motion-subject binding, we implement a syntax-guided contrastive constraint in the subsequent denoising phase, aimed at improving the correlations between the CA maps of verbs and their corresponding nouns.Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline approaches, producing higher-quality videos with improved subject-motion consistency.


HiCAST: Highly Customized Arbitrary Style Transfer with Adapter Enhanced Diffusion Models

arXiv.org Artificial Intelligence

The goal of Arbitrary Style Transfer (AST) is injecting the artistic features of a style reference into a given image/video. Existing methods usually focus on pursuing the balance between style and content, whereas ignoring the significant demand for flexible and customized stylization results and thereby limiting their practical application. To address this critical issue, a novel AST approach namely HiCAST is proposed, which is capable of explicitly customizing the stylization results according to various source of semantic clues. In the specific, our model is constructed based on Latent Diffusion Model (LDM) and elaborately designed to absorb content and style instance as conditions of LDM. It is characterized by introducing of \textit{Style Adapter}, which allows user to flexibly manipulate the output results by aligning multi-level style information and intrinsic knowledge in LDM. Lastly, we further extend our model to perform video AST. A novel learning objective is leveraged for video diffusion model training, which significantly improve cross-frame temporal consistency in the premise of maintaining stylization strength. Qualitative and quantitative comparisons as well as comprehensive user studies demonstrate that our HiCAST outperforms the existing SoTA methods in generating visually plausible stylization results.


WeCheck: Strong Factual Consistency Checker via Weakly Supervised Learning

arXiv.org Artificial Intelligence

A crucial issue of current text generation models is that they often uncontrollably generate factually inconsistent text with respective of their inputs. Limited by the lack of annotated data, existing works in evaluating factual consistency directly transfer the reasoning ability of models trained on other data-rich upstream tasks like question answering (QA) and natural language inference (NLI) without any further adaptation. As a result, they perform poorly on the real generated text and are biased heavily by their single-source upstream tasks. To alleviate this problem, we propose a weakly supervised framework that aggregates multiple resources to train a precise and efficient factual metric, namely WeCheck. WeCheck first utilizes a generative model to accurately label a real generated sample by aggregating its weak labels, which are inferred from multiple resources. Then, we train the target metric model with the weak supervision while taking noises into consideration. Comprehensive experiments on a variety of tasks demonstrate the strong performance of WeCheck, which achieves a 3.4\% absolute improvement over previous state-of-the-art methods on TRUE benchmark on average.


UNIMO-3: Multi-granularity Interaction for Vision-Language Representation Learning

arXiv.org Artificial Intelligence

Vision-and-language (VL) pre-training, which aims to learn a general representation of image-text pairs that can be transferred to various vision-and-language tasks. Compared with modeling uni-modal data, the main challenge of the VL model is: how to learn the cross-modal interaction from multimodal data, especially the fine-grained interaction. Existing works have shown that fully transformer-based models that adopt attention mechanisms to learn in-layer cross-model interaction can demonstrate impressive performance on various cross-modal downstream tasks. However, they ignored that the semantic information of the different modals at the same layer was not uniform, which leads to the cross-modal interaction collapsing into a limited multi-modal semantic information interaction. In this work, we propose the UNIMO-3 model, which has the capacity to simultaneously learn the multimodal in-layer interaction and cross-layer interaction. UNIMO-3 model can establish effective connections between different layers in a cross-modal encoder, and adaptively capture the interaction between two modalities at different levels. The experimental results show that our model achieves state-of-the-art performance in various downstream tasks, and through ablation study can prove that effective cross-layer learning improves the model's ability of multimodal representation.


FactGen: Faithful Text Generation by Factuality-aware Pre-training and Contrastive Ranking Fine-tuning

Journal of Artificial Intelligence Research

Conditional text generation is supposed to generate a fluent and coherent target text that is faithful to the source text. Although pre-trained models have achieved promising results, they still suffer from the crucial factuality problem. To deal with this issue, we propose a factuality-aware pretraining-finetuning framework named FactGen, which fully considers factuality during two training stages. Specifically, at the pre-training stage, we utilize a natural language inference model to construct target texts that are entailed by the source texts, resulting in a more factually consistent pre-training objective. Then, during the fine-tuning stage, we further introduce a contrastive ranking loss to encourage the model to generate factually consistent text with higher probability. Extensive experiments on three conditional text generation tasks demonstrate the effectiveness and generality of our training framework.


A Fine-grained Interpretability Evaluation Benchmark for Neural NLP

arXiv.org Artificial Intelligence

While there is increasing concern about the interpretability of neural models, the evaluation of interpretability remains an open problem, due to the lack of proper evaluation datasets and metrics. In this paper, we present a novel benchmark to evaluate the interpretability of both neural models and saliency methods. This benchmark covers three representative NLP tasks: sentiment analysis, textual similarity and reading comprehension, each provided with both English and Chinese annotated data. In order to precisely evaluate the interpretability, we provide token-level rationales that are carefully annotated to be sufficient, compact and comprehensive. We also design a new metric, i.e., the consistency between the rationales before and after perturbations, to uniformly evaluate the interpretability on different types of tasks. Based on this benchmark, we conduct experiments on three typical models with three saliency methods, and unveil their strengths and weakness in terms of interpretability. We will release this benchmark https://www.luge.ai/#/luge/task/taskDetail?taskId=15 and hope it can facilitate the research in building trustworthy systems.