Xiao, Jie
Exposure Bias Reduction for Enhancing Diffusion Transformer Feature Caching
Zou, Zhen, Yu, Hu, Xiao, Jie, Zhao, Feng
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this problem, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing the impact of caching on the generation of intermediate processes. So the lack of exploration provides us with room for analysis and improvement. In this paper, we analyze the impact of caching on the SNR of the diffusion process and discern that feature caching intensifies the denoising procedure, and we further identify this as a more severe exposure bias issue. Drawing on this insight, we introduce EB-Cache, a joint cache strategy that aligns the Non-exposure bias (which gives us a higher performance ceiling) diffusion process. Our approach incorporates a comprehensive understanding of caching mechanisms and offers a novel perspective on leveraging caches to expedite diffusion processes. Empirical results indicate that EB-Cache optimizes model performance while concurrently facilitating acceleration. Specifically, in the 50-step generation process, EB-Cache achieves 1.49$\times$ acceleration with 0.63 FID reduction from 3.69, surpassing prior acceleration methods. Code will be available at \href{https://github.com/aSleepyTree/EB-Cache}{https://github.com/aSleepyTree/EB-Cache}.
The Matrix: Infinite-Horizon World Generation with Real-Time Moving Control
Feng, Ruili, Zhang, Han, Yang, Zhantao, Xiao, Jie, Shu, Zhilei, Liu, Zhiheng, Zheng, Andy, Huang, Yukun, Liu, Yu, Zhang, Hongyang
We present The Matrix, the first foundational realistic world simulator capable of generating continuous 720p high-fidelity real-scene video streams with real-time, responsive control in both first- and third-person perspectives, enabling immersive exploration of richly dynamic environments. Trained on limited supervised data from AAA games like Forza Horizon 5 and Cyberpunk 2077, complemented by large-scale unsupervised footage from real-world settings like Tokyo streets, The Matrix allows users to traverse diverse terrains -- deserts, grasslands, water bodies, and urban landscapes -- in continuous, uncut hour-long sequences. Operating at 16 FPS, the system supports real-time interactivity and demonstrates zero-shot generalization, translating virtual game environments to real-world contexts where collecting continuous movement data is often infeasible. For example, The Matrix can simulate a BMW X3 driving through an office setting--an environment present in neither gaming data nor real-world sources. This approach showcases the potential of AAA game data to advance robust world models, bridging the gap between simulations and real-world applications in scenarios with limited data.
Large Language Model Performance Benchmarking on Mobile Platforms: A Thorough Evaluation
Xiao, Jie, Huang, Qianyi, Chen, Xu, Tian, Chen
As large language models (LLMs) increasingly integrate into every aspect of our work and daily lives, there are growing concerns about user privacy, which push the trend toward local deployment of these models. There are a number of lightweight LLMs (e.g., Gemini Nano, LLAMA2 7B) that can run locally on smartphones, providing users with greater control over their personal data. As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices. To fully understand the current landscape of LLM deployment on mobile platforms, we conduct a comprehensive measurement study on mobile devices. We evaluate both metrics that affect user experience, including token throughput, latency, and battery consumption, as well as factors critical to developers, such as resource utilization, DVFS strategies, and inference engines. In addition, we provide a detailed analysis of how these hardware capabilities and system dynamics affect on-device LLM performance, which may help developers identify and address bottlenecks for mobile LLM applications. We also provide comprehensive comparisons across the mobile system-on-chips (SoCs) from major vendors, highlighting their performance differences in handling LLM workloads. We hope that this study can provide insights for both the development of on-device LLMs and the design for future mobile system architecture.
BACON: Supercharge Your VLM with Bag-of-Concept Graph to Mitigate Hallucinations
Yang, Zhantao, Feng, Ruili, Yan, Keyu, Wang, Huangji, Wang, Zhicai, Zhu, Shangwen, Zhang, Han, Xiao, Jie, Wu, Pingyu, Zhu, Kai, Chen, Jixuan, Xie, Chen-Wei, Mao, Chaojie, Yang, Yue, Zhang, Hongyang, Liu, Yu, Cheng, Fan
This paper presents Bag-of-Concept Graph (BACON) to gift models with limited linguistic abilities to taste the privilege of Vision Language Models (VLMs) and boost downstream tasks such as detection, visual question answering (VQA), and image generation. Since the visual scenes in physical worlds are structured with complex relations between objects, BACON breaks down annotations into basic minimum elements and presents them in a graph structure. Element-wise style enables easy understanding, and structural composition liberates difficult locating. Careful prompt design births the BACON captions with the help of public-available VLMs and segmentation methods. In this way, we gather a dataset with 100K annotated images, which endow VLMs with remarkable capabilities, such as accurately generating BACON, transforming prompts into BACON format, envisioning scenarios in the style of BACONr, and dynamically modifying elements within BACON through interactive dialogue and more. Wide representative experiments, including detection, VQA, and image generation tasks, tell BACON as a lifeline to achieve previous out-of-reach tasks or excel in their current cutting-edge solutions.
Enabling Patient-side Disease Prediction via the Integration of Patient Narratives
Su, Zhixiang, Zhang, Yinan, Jing, Jiazheng, Xiao, Jie, Shen, Zhiqi
Disease prediction holds considerable significance in modern healthcare, because of its crucial role in facilitating early intervention and implementing effective prevention measures. However, most recent disease prediction approaches heavily rely on laboratory test outcomes (e.g., blood tests and medical imaging from X-rays). Gaining access to such data for precise disease prediction is often a complex task from the standpoint of a patient and is always only available post-patient consultation. To make disease prediction available from patient-side, we propose Personalized Medical Disease Prediction (PoMP), which predicts diseases using patient health narratives including textual descriptions and demographic information. By applying PoMP, patients can gain a clearer comprehension of their conditions, empowering them to directly seek appropriate medical specialists and thereby reducing the time spent navigating healthcare communication to locate suitable doctors. We conducted extensive experiments using real-world data from Haodf to showcase the effectiveness of PoMP.
Integrated Age Estimation Mechanism
Li, Fan, Li, Yongming, Wang, Pin, Xiao, Jie, Yan, Fang, Li, Xinke
Machine-learning-based age estimation has received lots of attention. Traditional age estimation mechanism focuses estimation age error, but ignores that there is a deviation between the estimated age and real age due to disease. Pathological age estimation mechanism the author proposed before introduces age deviation to solve the above problem and improves classification capability of the estimated age significantly. However,it does not consider the age estimation error of the normal control (NC) group and results in a larger error between the estimated age and real age of NC group. Therefore, an integrated age estimation mechanism based on Decision-Level fusion of error and deviation orientation model is proposed to solve the problem.Firstly, the traditional age estimation and pathological age estimation mechanisms are weighted together.Secondly, their optimal weights are obtained by minimizing mean absolute error (MAE) between the estimated age and real age of normal people. In the experimental section, several representative age-related datasets are used for verification of the proposed method. The results show that the proposed age estimation mechanism achieves a good tradeoff effect of age estimation. It not only improves the classification ability of the estimated age, but also reduces the age estimation error of the NC group. In general, the proposed age estimation mechanism is effective. Additionally, the mechanism is a framework mechanism that can be used to construct different specific age estimation algorithms, contributing to relevant research.