Xiao, Chuan
Data Overvaluation Attack and Truthful Data Valuation
Zheng, Shuyuan, Cai, Sudong, Xiao, Chuan, Cao, Yang, Qin, Jianbin, Yoshikawa, Masatoshi, Onizuka, Makoto
In collaborative machine learning, data valuation, i.e., evaluating the contribution of each client' data to the machine learning model, has become a critical task for incentivizing and selecting positive data contributions. However, existing studies often assume that clients engage in data valuation truthfully, overlooking the practical motivation for clients to exaggerate their contributions. To unlock this threat, this paper introduces the first data overvaluation attack, enabling strategic clients to have their data significantly overvalued. Furthermore, we propose a truthful data valuation metric, named Truth-Shapley. Truth-Shapley is the unique metric that guarantees some promising axioms for data valuation while ensuring that clients' optimal strategy is to perform truthful data valuation. Our experiments demonstrate the vulnerability of existing data valuation metrics to the data overvaluation attack and validate the robustness and effectiveness of Truth-Shapley.
SIMformer: Single-Layer Vanilla Transformer Can Learn Free-Space Trajectory Similarity
Yang, Chuang, Jiang, Renhe, Xu, Xiaohang, Xiao, Chuan, Sezaki, Kaoru
Free-space trajectory similarity calculation, e.g., DTW, Hausdorff, and Frechet, often incur quadratic time complexity, thus learning-based methods have been proposed to accelerate the computation. The core idea is to train an encoder to transform trajectories into representation vectors and then compute vector similarity to approximate the ground truth. However, existing methods face dual challenges of effectiveness and efficiency: 1) they all utilize Euclidean distance to compute representation similarity, which leads to the severe curse of dimensionality issue -- reducing the distinguishability among representations and significantly affecting the accuracy of subsequent similarity search tasks; 2) most of them are trained in triplets manner and often necessitate additional information which downgrades the efficiency; 3) previous studies, while emphasizing the scalability in terms of efficiency, overlooked the deterioration of effectiveness when the dataset size grows. To cope with these issues, we propose a simple, yet accurate, fast, scalable model that only uses a single-layer vanilla transformer encoder as the feature extractor and employs tailored representation similarity functions to approximate various ground truth similarity measures. Extensive experiments demonstrate our model significantly mitigates the curse of dimensionality issue and outperforms the state-of-the-arts in effectiveness, efficiency, and scalability.
Probabilistic Routing for Graph-Based Approximate Nearest Neighbor Search
Lu, Kejing, Xiao, Chuan, Ishikawa, Yoshiharu
Approximate nearest neighbor search (ANNS) in high-dimensional spaces is a pivotal challenge in the field of machine learning. In recent years, graph-based methods have emerged as the superior approach to ANNS, establishing a new state of the art. Although various optimizations for graph-based ANNS have been introduced, they predominantly rely on heuristic methods that lack formal theoretical backing. This paper aims to enhance routing within graph-based ANNS by introducing a method that offers a probabilistic guarantee when exploring a node's neighbors in the graph. We formulate the problem as probabilistic routing and develop two baseline strategies by incorporating locality-sensitive techniques. Subsequently, we introduce PEOs, a novel approach that efficiently identifies which neighbors in the graph should be considered for exact distance calculation, thus significantly improving efficiency in practice. Our experiments demonstrate that equipping PEOs can increase throughput on commonly utilized graph indexes (HNSW and NSSG) by a factor of 1.6 to 2.5, and its efficiency consistently outperforms the leading-edge routing technique by 1.1 to 1.4 times.
Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation
Wang, Jiawei, Jiang, Renhe, Yang, Chuang, Wu, Zengqing, Onizuka, Makoto, Shibasaki, Ryosuke, Koshizuka, Noboru, Xiao, Chuan
This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for flexible and effective personal mobility generation. LLMs overcome the limitations of previous models by effectively processing semantic data and offering versatility in modeling various tasks. Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility. The key technical contribution is a novel LLM agent framework that accounts for individual activity patterns and motivations, including a self-consistency approach to align LLMs with real-world activity data and a retrieval-augmented strategy for interpretable activity generation. We evaluate our LLM agent framework and compare it with state-of-the-art personal mobility generation approaches, demonstrating the effectiveness of our approach and its potential applications in urban mobility. Overall, this study marks the pioneering work of designing an LLM agent framework for activity generation based on real-world human activity data, offering a promising tool for urban mobility analysis.
"Guinea Pig Trials" Utilizing GPT: A Novel Smart Agent-Based Modeling Approach for Studying Firm Competition and Collusion
Han, Xu, Wu, Zengqing, Xiao, Chuan
Firm competition and collusion involve complex dynamics, particularly when considering communication among firms. Such issues can be modeled as problems of complex systems, traditionally approached through experiments involving human subjects or agent-based modeling methods. We propose an innovative framework called Smart Agent-Based Modeling (SABM), wherein smart agents, supported by GPT-4 technologies, represent firms, and interact with one another. We conducted a controlled experiment to study firm price competition and collusion behaviors under various conditions. SABM is more cost-effective and flexible compared to conducting experiments with human subjects. Smart agents possess an extensive knowledge base for decision-making and exhibit human-like strategic abilities, surpassing traditional ABM agents. Furthermore, smart agents can simulate human conversation and be personalized, making them ideal for studying complex situations involving communication. Our results demonstrate that, in the absence of communication, smart agents consistently reach tacit collusion, leading to prices converging at levels higher than the Bertrand equilibrium price but lower than monopoly or cartel prices. When communication is allowed, smart agents achieve a higher-level collusion with prices close to cartel prices. Collusion forms more quickly with communication, while price convergence is smoother without it. These results indicate that communication enhances trust between firms, encouraging frequent small price deviations to explore opportunities for a higher-level win-win situation and reducing the likelihood of triggering a price war. We also assigned different personas to firms to analyze behavioral differences and tested variant models under diverse market structures. The findings showcase the effectiveness and robustness of SABM and provide intriguing insights into competition and collusion.
Jellyfish: A Large Language Model for Data Preprocessing
Zhang, Haochen, Dong, Yuyang, Xiao, Chuan, Oyamada, Masafumi
In this paper, we present Jellyfish, an open-source LLM as a universal task solver for DP. Built on the Llama 2 13B model, Jellyfish is instruction-tuned with the datasets of several typical DP tasks including error detection, data imputation, schema matching, and entity matching, and delivers generalizability to other tasks. Remarkably, Jellyfish can operate on a local, single, and low-priced GPU with its 13 billion parameters, ensuring data security and enabling further tuning. Its proficiency in understanding natural language allows users to manually craft instructions for DP tasks. Unlike many existing methods that heavily rely on prior knowledge, Jellyfish acquires domain knowledge during its tuning process and integrates optional knowledge injection during inference. A distinctive feature of Jellyfish is its interpreter, which elucidates its output decisions. To construct Jellyfish, we develop a series of pre-tuning and DP-tuning techniques. Jellyfish is equipped with an instance serializer, which automatically translates raw data into model prompts, and a knowledge injector, which optionally introduces task- and dataset-specific knowledge to enhance DP performance. Our evaluation of Jellyfish, using a range of real datasets, shows its competitiveness compared to state-of-the-art methods and its strong generalizability to unseen tasks. Jellyfish's performance rivals that of GPT series models, and its interpreter offers enhanced reasoning capabilities compared to GPT-3.5. Furthermore, our evaluation highlights the effectiveness of the techniques employed in constructing Jellyfish. Our model is available at Hugging Face: https://huggingface.co/NECOUDBFM/Jellyfish .
Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations
Wu, Zengqing, Peng, Run, Han, Xu, Zheng, Shuyuan, Zhang, Yixin, Xiao, Chuan
Computer simulations offer a robust toolset for exploring complex systems across various disciplines. A particularly impactful approach within this realm is Agent-Based Modeling (ABM), which harnesses the interactions of individual agents to emulate intricate system dynamics. ABM's strength lies in its bottom-up methodology, illuminating emergent phenomena by modeling the behaviors of individual components of a system. Yet, ABM has its own set of challenges, notably its struggle with modeling natural language instructions and common sense in mathematical equations or rules. This paper seeks to transcend these boundaries by integrating Large Language Models (LLMs) like GPT into ABM. This amalgamation gives birth to a novel framework, Smart Agent-Based Modeling (SABM). Building upon the concept of smart agents -- entities characterized by their intelligence, adaptability, and computation ability -- we explore in the direction of utilizing LLM-powered agents to simulate real-world scenarios with increased nuance and realism. In this comprehensive exploration, we elucidate the state of the art of ABM, introduce SABM's potential and methodology, and present three case studies (source codes available at https://github.com/Roihn/SABM), demonstrating the SABM methodology and validating its effectiveness in modeling real-world systems. Furthermore, we cast a vision towards several aspects of the future of SABM, anticipating a broader horizon for its applications. Through this endeavor, we aspire to redefine the boundaries of computer simulations, enabling a more profound understanding of complex systems.
BClean: A Bayesian Data Cleaning System
Qin, Jianbin, Huang, Sifan, Wang, Yaoshu, Zhu, Jing, Zhang, Yifan, Miao, Yukai, Mao, Rui, Onizuka, Makoto, Xiao, Chuan
There is a considerable body of work on data cleaning which employs various principles to rectify erroneous data and transform a dirty dataset into a cleaner one. One of prevalent approaches is probabilistic methods, including Bayesian methods. However, existing probabilistic methods often assume a simplistic distribution (e.g., Gaussian distribution), which is frequently underfitted in practice, or they necessitate experts to provide a complex prior distribution (e.g., via a programming language). This requirement is both labor-intensive and costly, rendering these methods less suitable for real-world applications. In this paper, we propose BClean, a Bayesian Cleaning system that features automatic Bayesian network construction and user interaction. We recast the data cleaning problem as a Bayesian inference that fully exploits the relationships between attributes in the observed dataset and any prior information provided by users. To this end, we present an automatic Bayesian network construction method that extends a structure learning-based functional dependency discovery method with similarity functions to capture the relationships between attributes. Furthermore, our system allows users to modify the generated Bayesian network in order to specify prior information or correct inaccuracies identified by the automatic generation process. We also design an effective scoring model (called the compensative scoring model) necessary for the Bayesian inference. To enhance the efficiency of data cleaning, we propose several approximation strategies for the Bayesian inference, including graph partitioning, domain pruning, and pre-detection. By evaluating on both real-world and synthetic datasets, we demonstrate that BClean is capable of achieving an F-measure of up to 0.9 in data cleaning, outperforming existing Bayesian methods by 2% and other data cleaning methods by 15%.
Large Language Models as Data Preprocessors
Zhang, Haochen, Dong, Yuyang, Xiao, Chuan, Oyamada, Masafumi
Large Language Models (LLMs), typified by OpenAI's GPT series and Meta's LLaMA variants, have marked a significant advancement in artificial intelligence. Trained on vast amounts of text data, LLMs are capable of understanding and generating human-like text across a diverse range of topics. This study expands on the applications of LLMs, exploring their potential in data preprocessing, a critical stage in data mining and analytics applications. We delve into the applicability of state-of-the-art LLMs such as GPT-3.5, GPT-4, and Vicuna-13B for error detection, data imputation, schema matching, and entity matching tasks. Alongside showcasing the inherent capabilities of LLMs, we highlight their limitations, particularly in terms of computational expense and inefficiency. We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques, coupled with traditional methods like contextualization and feature selection, to improve the performance and efficiency of these models. The effectiveness of LLMs in data preprocessing is evaluated through an experimental study spanning 12 datasets. GPT-4 emerged as a standout, achieving 100\% accuracy or F1 score on 4 datasets, suggesting LLMs' immense potential in these tasks. Despite certain limitations, our study underscores the promise of LLMs in this domain and anticipates future developments to overcome current hurdles.
DeepJoin: Joinable Table Discovery with Pre-trained Language Models
Dong, Yuyang, Xiao, Chuan, Nozawa, Takuma, Enomoto, Masafumi, Oyamada, Masafumi
Due to the usefulness in data enrichment for data analysis tasks, joinable table discovery has become an important operation in data lake management. Existing approaches target equi-joins, the most common way of combining tables for creating a unified view, or semantic joins, which tolerate misspellings and different formats to deliver more join results. They are either exact solutions whose running time is linear in the sizes of query column and target table repository or approximate solutions lacking precision. In this paper, we propose Deepjoin, a deep learning model for accurate and efficient joinable table discovery. Our solution is an embedding-based retrieval, which employs a pre-trained language model (PLM) and is designed as one framework serving both equi- and semantic joins. We propose a set of contextualization options to transform column contents to a text sequence. The PLM reads the sequence and is fine-tuned to embed columns to vectors such that columns are expected to be joinable if they are close to each other in the vector space. Since the output of the PLM is fixed in length, the subsequent search procedure becomes independent of the column size. With a state-of-the-art approximate nearest neighbor search algorithm, the search time is logarithmic in the repository size. To train the model, we devise the techniques for preparing training data as well as data augmentation. The experiments on real datasets demonstrate that by training on a small subset of a corpus, Deepjoin generalizes to large datasets and its precision consistently outperforms other approximate solutions'. Deepjoin is even more accurate than an exact solution to semantic joins when evaluated with labels from experts. Moreover, when equipped with a GPU, Deepjoin is up to two orders of magnitude faster than existing solutions.