Xia, Shutao
Diffusion Prior Interpolation for Flexibility Real-World Face Super-Resolution
Yang, Jiarui, Dai, Tao, Zhu, Yufei, Li, Naiqi, Li, Jinmin, Xia, Shutao
Diffusion models represent the state-of-the-art in generative modeling. Due to their high training costs, many works leverage pre-trained diffusion models' powerful representations for downstream tasks, such as face super-resolution (FSR), through fine-tuning or prior-based methods. However, relying solely on priors without supervised training makes it challenging to meet the pixel-level accuracy requirements of discrimination task. Although prior-based methods can achieve high fidelity and high-quality results, ensuring consistency remains a significant challenge. In this paper, we propose a masking strategy with strong and weak constraints and iterative refinement for real-world FSR, termed Diffusion Prior Interpolation (DPI). We introduce conditions and constraints on consistency by masking different sampling stages based on the structural characteristics of the face. Furthermore, we propose a condition Corrector (CRT) to establish a reciprocal posterior sampling process, enhancing FSR performance by mutual refinement of conditions and samples. DPI can balance consistency and diversity and can be seamlessly integrated into pre-trained models. In extensive experiments conducted on synthetic and real datasets, along with consistency validation in face recognition, DPI demonstrates superiority over SOTA FSR methods. The code is available at \url{https://github.com/JerryYann/DPI}.
EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance
Li, Yingxin, Li, Ye, Meng, Yuan, Ma, Xinzhu, Geng, Zihan, Xia, Shutao, Wang, Zhi
As large language models (LLMs) continue to advance, the demand for higher quality and faster processing of long contexts across various applications is growing. KV cache is widely adopted as it stores previously generated key and value tokens, effectively reducing redundant computations during inference. However, as memory overhead becomes a significant concern, efficient compression of KV cache has gained increasing attention. Most existing methods perform compression from two perspectives: identifying important tokens and designing compression strategies. However, these approaches often produce biased distributions of important tokens due to the influence of accumulated attention scores or positional encoding. Furthermore, they overlook the sparsity and redundancy across different heads, which leads to difficulties in preserving the most effective information at the head level. To this end, we propose EMS to overcome these limitations, while achieving better KV cache compression under extreme compression ratios. Specifically, we introduce a Global-Local score that combines accumulated attention scores from both global and local KV tokens to better identify the token importance. Additionally, we implement the head-wise parallel compression through a zero-class mechanism to enhance efficiency. Extensive experiments demonstrate our SOTA performance even under extreme compression ratios. EMS consistently achieves the lowest perplexity, improves scores by over 1.28 points across four LLMs on LongBench under a 256 cache budget, and preserves 95% retrieval accuracy with a cache budget less than 2% of the context length in the Needle-in-a-Haystack task. With growing application demands for LLMs, the requirement to manage long sequences (Chen et al., 2024b; Jin et al., 2024; Chen et al., 2023) is also increasing.
Theoretically Principled Federated Learning for Balancing Privacy and Utility
Zhang, Xiaojin, Li, Wenjie, Chen, Kai, Xia, Shutao, Yang, Qiang
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters, which facilitates the trade-off between privacy and utility. The algorithm is applicable to arbitrary privacy measurements that maps from the distortion to a real value. It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning. Such adaptive and fine-grained protection can improve the effectiveness of privacy-preserved federated learning. Theoretically, we show that gap between the utility loss of the protection hyperparameter output by our algorithm and that of the optimal protection hyperparameter is sub-linear in the total number of iterations. The sublinearity of our algorithm indicates that the average gap between the performance of our algorithm and that of the optimal performance goes to zero when the number of iterations goes to infinity. Further, we provide the convergence rate of our proposed algorithm. We conduct empirical results on benchmark datasets to verify that our method achieves better utility than the baseline methods under the same privacy budget.
Contrastive Masked Autoencoders for Self-Supervised Video Hashing
Wang, Yuting, Wang, Jinpeng, Chen, Bin, Zeng, Ziyun, Xia, Shutao
Self-Supervised Video Hashing (SSVH) models learn to generate short binary representations for videos without ground-truth supervision, facilitating large-scale video retrieval efficiency and attracting increasing research attention. The success of SSVH lies in the understanding of video content and the ability to capture the semantic relation among unlabeled videos. Typically, state-of-the-art SSVH methods consider these two points in a two-stage training pipeline, where they firstly train an auxiliary network by instance-wise mask-and-predict tasks and secondly train a hashing model to preserve the pseudo-neighborhood structure transferred from the auxiliary network. This consecutive training strategy is inflexible and also unnecessary. In this paper, we propose a simple yet effective one-stage SSVH method called ConMH, which incorporates video semantic information and video similarity relationship understanding in a single stage. To capture video semantic information for better hashing learning, we adopt an encoder-decoder structure to reconstruct the video from its temporal-masked frames. Particularly, we find that a higher masking ratio helps video understanding. Besides, we fully exploit the similarity relationship between videos by maximizing agreement between two augmented views of a video, which contributes to more discriminative and robust hash codes. Extensive experiments on three large-scale video datasets (i.e., FCVID, ActivityNet and YFCC) indicate that ConMH achieves state-of-the-art results. Code is available at https://github.com/huangmozhi9527/ConMH.
WeClick: Weakly-Supervised Video Semantic Segmentation with Click Annotations
Liu, Peidong, He, Zibin, Yan, Xiyu, Jiang, Yong, Xia, Shutao, Zheng, Feng, Hu, Maowei
Compared with tedious per-pixel mask annotating, it is much easier to annotate data by clicks, which costs only several seconds for an image. However, applying clicks to learn video semantic segmentation model has not been explored before. In this work, we propose an effective weakly-supervised video semantic segmentation pipeline with click annotations, called WeClick, for saving laborious annotating effort by segmenting an instance of the semantic class with only a single click. Since detailed semantic information is not captured by clicks, directly training with click labels leads to poor segmentation predictions. To mitigate this problem, we design a novel memory flow knowledge distillation strategy to exploit temporal information (named memory flow) in abundant unlabeled video frames, by distilling the neighboring predictions to the target frame via estimated motion. Moreover, we adopt vanilla knowledge distillation for model compression. In this case, WeClick learns compact video semantic segmentation models with the low-cost click annotations during the training phase yet achieves real-time and accurate models during the inference period. Experimental results on Cityscapes and Camvid show that WeClick outperforms the state-of-the-art methods, increases performance by 10.24% mIoU than baseline, and achieves real-time execution.
$t$-$k$-means: A $k$-means Variant with Robustness and Stability
Zhang, Yang, Tang, Qingtao, Li, Yiming, Huang, Weipeng, Xia, Shutao
Lloyd's $k$-means algorithm is one of the most classical clustering method, which is widely used in data mining or as a data pre-processing procedure. However, due to the thin-tailed property of the Gaussian distribution, $k$-means suffers from relatively poor performance on the heavy-tailed data or outliers. In addition, $k$-means have a relatively weak stability, $i.e.$ its result has a large variance, which reduces the credibility of the model. In this paper, we propose a robust and stable $k$-means variant, the $t$-$k$-means, as well as its fast version in solving the flat clustering problem. Theoretically, we detail the derivations of $t$-$k$-means and analyze its robustness and stability from the aspect of loss function, influence function and the expression of clustering center. A large number of experiments are conducted, which empirically demonstrates that our method has empirical soundness while preserving running efficiency.
Self-Paced Probabilistic Principal Component Analysis for Data with Outliers
Zhao, Bowen, Xiao, Xi, Zhang, Wanpeng, Zhang, Bin, Xia, Shutao
Principal Component Analysis (PCA) is a popular tool for dimensionality reduction and feature extraction in data analysis. There is a probabilistic version of PCA, known as Probabilistic PCA (PPCA). However, standard PCA and PPCA are not robust, as they are sensitive to outliers. To alleviate this problem, this paper introduces the Self-Paced Learning mechanism into PPCA, and proposes a novel method called Self-Paced Probabilistic Principal Component Analysis (SP-PPCA). Furthermore, we design the corresponding optimization algorithm based on the alternative search strategy and the expectation-maximization algorithm. SP-PPCA looks for optimal projection vectors and filters out outliers iteratively. Experiments on both synthetic problems and real-world datasets clearly demonstrate that SP-PPCA is able to reduce or eliminate the impact of outliers.
Rectified Decision Trees: Towards Interpretability, Compression and Empirical Soundness
Bai, Jiawang, Li, Yiming, Li, Jiawei, Jiang, Yong, Xia, Shutao
How to obtain a model with good interpretability and performance has always been an important research topic. In this paper, we propose rectified decision trees (ReDT), a knowledge distillation based decision trees rectification with high interpretability, small model size, and empirical soundness. Specifically, we extend the impurity calculation and the pure ending condition of the classical decision tree to propose a decision tree extension that allows the use of soft labels generated by a well-trained teacher model in training and prediction process. It is worth noting that for the acquisition of soft labels, we propose a new multiple cross-validation based method to reduce the effects of randomness and overfitting. These approaches ensure that ReDT retains excellent interpretability and even achieves fewer nodes than the decision tree in the aspect of compression while having relatively good performance. Besides, in contrast to traditional knowledge distillation, back propagation of the student model is not necessarily required in ReDT, which is an attempt of a new knowledge distillation approach. Extensive experiments are conducted, which demonstrates the superiority of ReDT in interpretability, compression, and empirical soundness.
Multinomial Random Forests: Fill the Gap between Theoretical Consistency and Empirical Soundness
Li, Yiming, Bai, Jiawang, Tang, Qingtao, Jiang, Yong, Li, Chun, Xia, Shutao
Random forests (RF) are one of the most widely used ensemble learning methods in classification and regression tasks. Despite its impressive performance, its theoretical consistency, which would ensure that its result converges to the optimum as the sample size increases, has been left far behind. Several consistent random forest variants have been proposed, yet all with relatively poor performance compared to the original random forests. In this paper, a novel RF framework named multinomial random forests (MRF) is proposed. In the MRF, an impurity-based multinomial distribution is constructed as the basis for the selection of a splitting point. This ensures that a certain degree of randomness is achieved while the overall quality of the trees is not much different from the original random forests. We prove the consistency of the MRF and demonstrate with multiple datasets that it performs similarly as the original random forests and better than existent consistent random forest variants for both classification and regression tasks.