Goto

Collaborating Authors

 Xia, Bin


Multi-User Semantic Fusion for Semantic Communications over Degraded Broadcast Channels

arXiv.org Artificial Intelligence

Degraded broadcast channels (DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. In the proposed method, the transmitter extracts semantic features for two users separately. It then effectively fuses these semantic features for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance the performance between the two users. Considering the different channel state information (CSI) of both users over DBC, a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel. Experimental results show that the proposed system outperforms the traditional broadcasting schemes.


Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising

arXiv.org Artificial Intelligence

Deep learning-based denoiser has been the focus of recent development on image denoising. In the past few years, there has been increasing interest in developing self-supervised denoising networks that only require noisy images, without the need for clean ground truth for training. However, a performance gap remains between current self-supervised methods and their supervised counterparts. Additionally, these methods commonly depend on assumptions about noise characteristics, thereby constraining their applicability in real-world scenarios. Inspired by the properties of the Frobenius norm expansion, we discover that incorporating a trace term reduces the optimization goal disparity between self-supervised and supervised methods, thereby enhancing the performance of self-supervised learning. To exploit this insight, we propose a trace-constraint loss function and design the low-trace adaptation Noise2Noise (LoTA-N2N) model that bridges the gap between self-supervised and supervised learning. Furthermore, we have discovered that several existing self-supervised denoising frameworks naturally fall within the proposed trace-constraint loss as subcases. Extensive experiments conducted on natural and confocal image datasets indicate that our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches, without relying on any assumptions regarding the noise.


DSR-Diff: Depth Map Super-Resolution with Diffusion Model

arXiv.org Artificial Intelligence

Color-guided depth map super-resolution (CDSR) improve the spatial resolution of a low-quality depth map with the corresponding high-quality color map, benefiting various applications such as 3D reconstruction, virtual reality, and augmented reality. While conventional CDSR methods typically rely on convolutional neural networks or transformers, diffusion models (DMs) have demonstrated notable effectiveness in high-level vision tasks. In this work, we present a novel CDSR paradigm that utilizes a diffusion model within the latent space to generate guidance for depth map super-resolution. The proposed method comprises a guidance generation network (GGN), a depth map super-resolution network (DSRN), and a guidance recovery network (GRN). The GGN is specifically designed to generate the guidance while managing its compactness. Additionally, we integrate a simple but effective feature fusion module and a transformer-style feature extraction module into the DSRN, enabling it to leverage guided priors in the extraction, fusion, and reconstruction of multi-model images. Taking into account both accuracy and efficiency, our proposed method has shown superior performance in extensive experiments when compared to state-of-the-art methods. Our codes will be made available at https://github.com/shiyuan7/DSR-Diff.


SSR-TA: Sequence to Sequence based expert recurrent recommendation for ticket automation

arXiv.org Artificial Intelligence

The ticket automation provides crucial support for the normal operation of IT software systems. An essential task of ticket automation is to assign experts to solve upcoming tickets. However, facing thousands of tickets, inappropriate assignments will make tickets transfer frequently among experts, which causes time delays and wasted resources. Effectively and efficiently finding an appropriate expert in fewer steps is vital to ticket automation. In this paper, we proposed a sequence to sequence based translation model combined with a recurrent recommendation network to recommend appropriate experts for tickets. The sequence to sequence model transforms the ticket description into the corresponding resolution for capturing the potential and useful features of representing tickets. The recurrent recommendation network recommends the appropriate expert based on the assumption that the previous expert in the recommendation sequence cannot solve the expert. To evaluate the performance, we conducted experiments to compare several baselines with SSR-TA on two real-world datasets, and the experimental results show that our proposed model outperforms the baselines. The comparative experiment results also show that SSR-TA has a better performance of expert recommendations for user-generated tickets.


Efficient Non-Local Contrastive Attention for Image Super-Resolution

arXiv.org Artificial Intelligence

Non-Local Attention (NLA) brings significant improvement for Single Image Super-Resolution (SISR) by leveraging intrinsic feature correlation in natural images. However, NLA gives noisy information large weights and consumes quadratic computation resources with respect to the input size, limiting its performance and application. In this paper, we propose a novel Efficient Non-Local Contrastive Attention (ENLCA) to perform long-range visual modeling and leverage more relevant non-local features. Specifically, ENLCA consists of two parts, Efficient Non-Local Attention (ENLA) and Sparse Aggregation. ENLA adopts the kernel method to approximate exponential function and obtains linear computation complexity. For Sparse Aggregation, we multiply inputs by an amplification factor to focus on informative features, yet the variance of approximation increases exponentially. Therefore, contrastive learning is applied to further separate relevant and irrelevant features. To demonstrate the effectiveness of ENLCA, we build an architecture called Efficient Non-Local Contrastive Network (ENLCN) by adding a few of our modules in a simple backbone. Extensive experimental results show that ENLCN reaches superior performance over state-of-the-art approaches on both quantitative and qualitative evaluations.


Accurate Cup-to-Disc Ratio Measurement with Tight Bounding Box Supervision in Fundus Photography

arXiv.org Artificial Intelligence

The cup-to-disc ratio (CDR) is one of the most significant indicator for glaucoma diagnosis. Different from the use of costly fully supervised learning formulation with pixel-wise annotations in the literature, this study investigates the feasibility of accurate CDR measurement in fundus images using only tight bounding box supervision. For this purpose, we develop a two-task network for accurate CDR measurement, one for weakly supervised image segmentation, and the other for bounding-box regression. The weakly supervised image segmentation task is implemented based on generalized multiple instance learning formulation and smooth maximum approximation, and the bounding-box regression task outputs class-specific bounding box prediction in a single scale at the original image resolution. To get accurate bounding box prediction, a class-specific bounding-box normalizer and an expected intersection-over-union are proposed. In the experiments, the proposed approach was evaluated by a testing set with 1200 images using CDR error and F1 score for CDR measurement and dice coefficient for image segmentation. A grader study was conducted to compare the performance of the proposed approach with those of individual graders. The results demonstrate that the proposed approach outperforms the state-of-the-art performance obtained from the fully supervised image segmentation (FSIS) approach using pixel-wise annotation for CDR measurement, which is also better than those of individual graders. It also gets performance close to the state-of-the-art obtained from FSIS for optic cup and disc segmentation, similar to those of individual graders. The codes are available at \url{https://github.com/wangjuan313/CDRNet}.


Bounding Box Tightness Prior for Weakly Supervised Image Segmentation

arXiv.org Artificial Intelligence

This paper presents a weakly supervised image segmentation method that adopts tight bounding box annotations. It proposes generalized multiple instance learning (MIL) and smooth maximum approximation to integrate the bounding box tightness prior into the deep neural network in an end-to-end manner. In generalized MIL, positive bags are defined by parallel crossing lines with a set of different angles, and negative bags are defined as individual pixels outside of any bounding boxes. Two variants of smooth maximum approximation, i.e., $\alpha$-softmax function and $\alpha$-quasimax function, are exploited to conquer the numeral instability introduced by maximum function of bag prediction. The proposed approach was evaluated on two pubic medical datasets using Dice coefficient. The results demonstrate that it outperforms the state-of-the-art methods. The codes are available at \url{https://github.com/wangjuan313/wsis-boundingbox}.