Xi, Yunjia
LIBER: Lifelong User Behavior Modeling Based on Large Language Models
Zhu, Chenxu, Quan, Shigang, Chen, Bo, Lin, Jianghao, Cai, Xiaoling, Zhu, Hong, Li, Xiangyang, Xi, Yunjia, Zhang, Weinan, Tang, Ruiming
CTR prediction plays a vital role in recommender systems. Recently, large language models (LLMs) have been applied in recommender systems due to their emergence abilities. While leveraging semantic information from LLMs has shown some improvements in the performance of recommender systems, two notable limitations persist in these studies. First, LLM-enhanced recommender systems encounter challenges in extracting valuable information from lifelong user behavior sequences within textual contexts for recommendation tasks. Second, the inherent variability in human behaviors leads to a constant stream of new behaviors and irregularly fluctuating user interests. This characteristic imposes two significant challenges on existing models. On the one hand, it presents difficulties for LLMs in effectively capturing the dynamic shifts in user interests within these sequences, and on the other hand, there exists the issue of substantial computational overhead if the LLMs necessitate recurrent calls upon each update to the user sequences. In this work, we propose Lifelong User Behavior Modeling (LIBER) based on large language models, which includes three modules: (1) User Behavior Streaming Partition (UBSP), (2) User Interest Learning (UIL), and (3) User Interest Fusion (UIF). Initially, UBSP is employed to condense lengthy user behavior sequences into shorter partitions in an incremental paradigm, facilitating more efficient processing. Subsequently, UIL leverages LLMs in a cascading way to infer insights from these partitions. Finally, UIF integrates the textual outputs generated by the aforementioned processes to construct a comprehensive representation, which can be incorporated by any recommendation model to enhance performance. LIBER has been deployed on Huawei's music recommendation service and achieved substantial improvements in users' play count and play time by 3.01% and 7.69%.
DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation
Du, Kounianhua, Chen, Jizheng, Lin, Jianghao, Xi, Yunjia, Wang, Hangyu, Dai, Xinyi, Chen, Bo, Tang, Ruiming, Zhang, Weinan
Recommender systems play important roles in various applications such as e-commerce, social media, etc. Conventional recommendation methods usually model the collaborative signals within the tabular representation space. Despite the personalization modeling and the efficiency, the latent semantic dependencies are omitted. Methods that introduce semantics into recommendation then emerge, injecting knowledge from the semantic representation space where the general language understanding are compressed. However, existing semantic-enhanced recommendation methods focus on aligning the two spaces, during which the representations of the two spaces tend to get close while the unique patterns are discarded and not well explored. In this paper, we propose DisCo to Disentangle the unique patterns from the two representation spaces and Collaborate the two spaces for recommendation enhancement, where both the specificity and the consistency of the two spaces are captured. Concretely, we propose 1) a dual-side attentive network to capture the intra-domain patterns and the inter-domain patterns, 2) a sufficiency constraint to preserve the task-relevant information of each representation space and filter out the noise, and 3) a disentanglement constraint to avoid the model from discarding the unique information. These modules strike a balance between disentanglement and collaboration of the two representation spaces to produce informative pattern vectors, which could serve as extra features and be appended to arbitrary recommendation backbones for enhancement. Experiment results validate the superiority of our method against different models and the compatibility of DisCo over different backbones. Various ablation studies and efficiency analysis are also conducted to justify each model component.
ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
Lin, Jianghao, Chen, Bo, Wang, Hangyu, Xi, Yunjia, Qu, Yanru, Dai, Xinyi, Zhang, Kangning, Tang, Ruiming, Yu, Yong, Zhang, Weinan
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications. Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features. Such a paradigm suffers from the problem of semantic information loss. Another line of research explores the potential of pretrained language models (PLMs) for CTR prediction by converting input data into textual sentences through hard prompt templates. Although semantic signals are preserved, they generally fail to capture the collaborative information (e.g., feature interactions, pure ID features), not to mention the unacceptable inference overhead brought by the huge model size. In this paper, we aim to model both the semantic knowledge and collaborative knowledge for accurate CTR estimation, and meanwhile address the inference inefficiency issue. To benefit from both worlds and close their gaps, we propose a novel model-agnostic framework (i.e., ClickPrompt), where we incorporate CTR models to generate interaction-aware soft prompts for PLMs. We design a prompt-augmented masked language modeling (PA-MLM) pretraining task, where PLM has to recover the masked tokens based on the language context, as well as the soft prompts generated by CTR model. The collaborative and semantic knowledge from ID and textual features would be explicitly aligned and interacted via the prompt interface. Then, we can either tune the CTR model with PLM for superior performance, or solely tune the CTR model without PLM for inference efficiency. Experiments on four real-world datasets validate the effectiveness of ClickPrompt compared with existing baselines.
How Can Recommender Systems Benefit from Large Language Models: A Survey
Lin, Jianghao, Dai, Xinyi, Xi, Yunjia, Liu, Weiwen, Chen, Bo, Li, Xiangyang, Zhu, Chenxu, Guo, Huifeng, Yu, Yong, Tang, Ruiming, Zhang, Weinan
Recommender systems (RS) play important roles to match users' information needs for Internet applications. In natural language processing (NLP) domains, large language model (LLM) has shown astonishing emergent abilities (e.g., instruction following, reasoning), thus giving rise to the promising research direction of adapting LLM to RS for performance enhancements and user experience improvements. In this paper, we conduct a comprehensive survey on this research direction from an application-oriented view. We first summarize existing research works from two orthogonal perspectives: where and how to adapt LLM to RS. For the "WHERE" question, we discuss the roles that LLM could play in different stages of the recommendation pipeline, i.e., feature engineering, feature encoder, scoring/ranking function, and pipeline controller. For the "HOW" question, we investigate the training and inference strategies, resulting in two fine-grained taxonomy criteria, i.e., whether to tune LLMs or not, and whether to involve conventional recommendation model (CRM) for inference. Detailed analysis and general development trajectories are provided for both questions, respectively. Then, we highlight key challenges in adapting LLM to RS from three aspects, i.e., efficiency, effectiveness, and ethics. Finally, we summarize the survey and discuss the future prospects. We also actively maintain a GitHub repository for papers and other related resources in this rising direction: https://github.com/CHIANGEL/Awesome-LLM-for-RecSys.