Goto

Collaborating Authors

 Wu, Zhe


BodyGen: Advancing Towards Efficient Embodiment Co-Design

arXiv.org Artificial Intelligence

Embodiment co-design aims to optimize a robot's morphology and control policy simultaneously. While prior work has demonstrated its potential for generating environment-adaptive robots, this field still faces persistent challenges in optimization efficiency due to the (i) combinatorial nature of morphological search spaces and (ii) intricate dependencies between morphology and control. We prove that the ineffective morphology representation and unbalanced reward signals between the design and control stages are key obstacles to efficiency. To advance towards efficient embodiment co-design, we propose BodyGen, which utilizes (1) topology-aware self-attention for both design and control, enabling efficient morphology representation with lightweight model sizes; (2) a temporal credit assignment mechanism that ensures balanced reward signals for optimization. With our findings, Body achieves an average 60.03% performance improvement against state-of-the-art baselines. We provide codes and more results on the website: https://genesisorigin.github.io.


A Survey on E-Commerce Learning to Rank

arXiv.org Artificial Intelligence

In e-commerce, ranking the search results based on users' preference is the most important task. Commercial e-commerce platforms, such as, Amazon, Alibaba, eBay, Walmart, etc. perform extensive and relentless research to perfect their search result ranking algorithms because the quality of ranking drives a user's decision to purchase or not to purchase an item, directly affecting the profitability of the e-commerce platform. In such a commercial platforms, for optimizing search result ranking numerous features are considered, which emerge from relevance, personalization, seller's reputation and paid promotion. To maintain their competitive advantage in the market, the platforms do no publish their core ranking algorithms, so it is difficult to know which of the algorithms or which of the features is the most effective for finding the most optimal search result ranking in e-commerce. No extensive surveys of ranking to rank in the e-commerce domain is also not yet published. In this work, we survey the existing e-commerce learning to rank algorithms. Besides, we also compare these algorithms based on query relevance criterion on a large real-life e-commerce dataset and provide a quantitative analysis. To the best of our knowledge this is the first such survey which include an experimental comparison among various learning to rank algorithms.


Centrality-aware Product Retrieval and Ranking

arXiv.org Artificial Intelligence

This paper addresses the challenge of improving user experience on e-commerce platforms by enhancing product ranking relevant to users' search queries. Ambiguity and complexity of user queries often lead to a mismatch between the user's intent and retrieved product titles or documents. Recent approaches have proposed the use of Transformer-based models, which need millions of annotated query-title pairs during the pre-training stage, and this data often does not take user intent into account. To tackle this, we curate samples from existing datasets at eBay, manually annotated with buyer-centric relevance scores and centrality scores, which reflect how well the product title matches the users' intent. We introduce a User-intent Centrality Optimization (UCO) approach for existing models, which optimises for the user intent in semantic product search. To that end, we propose a dual-loss based optimisation to handle hard negatives, i.e., product titles that are semantically relevant but do not reflect the user's intent. Our contributions include curating challenging evaluation sets and implementing UCO, resulting in significant product ranking efficiency improvements observed for different evaluation metrics. Our work aims to ensure that the most buyer-centric titles for a query are ranked higher, thereby, enhancing the user experience on e-commerce platforms.


Transductive Off-policy Proximal Policy Optimization

arXiv.org Artificial Intelligence

Proximal Policy Optimization (PPO) is a popular model-free reinforcement learning algorithm, esteemed for its simplicity and efficacy. However, due to its inherent on-policy nature, its proficiency in harnessing data from disparate policies is constrained. This paper introduces a novel off-policy extension to the original PPO method, christened Transductive Off-policy PPO (ToPPO). Herein, we provide theoretical justification for incorporating off-policy data in PPO training and prudent guidelines for its safe application. Our contribution includes a novel formulation of the policy improvement lower bound for prospective policies derived from off-policy data, accompanied by a computationally efficient mechanism to optimize this bound, underpinned by assurances of monotonic improvement. Comprehensive experimental results across six representative tasks underscore ToPPO's promising performance.


Reflective Policy Optimization

arXiv.org Machine Learning

On-policy reinforcement learning methods, like Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO), often demand extensive data per update, leading to sample inefficiency. This paper introduces Reflective Policy Optimization (RPO), a novel on-policy extension that amalgamates past and future state-action information for policy optimization. This approach empowers the agent for introspection, allowing modifications to its actions within the current state. Theoretical analysis confirms that policy performance is monotonically improved and contracts the solution space, consequently expediting the convergence procedure. Empirical results demonstrate RPO's feasibility and efficacy in two reinforcement learning benchmarks, culminating in superior sample efficiency. The source code of this work is available at https://github.com/Edgargan/RPO.


Foundation Model for Chemical Process Modeling: Meta-Learning with Physics-Informed Adaptation

arXiv.org Artificial Intelligence

In this work, we introduce a novel application of foundation models in the domain of nonlinear chemical process modeling. Given the challenges of obtaining accurate first-principles models for real-world chemical processes and the inefficiency of rebuilding and retraining models for new chemical processes, we pose a pivotal question: What if we could develop a single, universal neural network (i.e., foundation model) capable of rapidly adapting to modeling any new chemical process? To address this question, we propose a meta-learning-based approach using Reptile to construct the foundation model, followed by physics-informed adaptation to fine-tune it to new modeling tasks using only a few data samples. To assess the effectiveness of our methodology, we construct a foundation model for various chemical reactions in three classical generic reactors, including continuous stirred tank reactors (CSTRs), batch reactors (BRs), and plug flow reactors (PFRs). Our approach outperforms conventional methods such as data-driven learning, physics-informed learning, transfer learning, and pure meta-learning in a few-shot setting. Furthermore, our method achieves rapid adaptation to new CSTRs, BRs, and PFRs using only a few data samples from the designated tasks. Source code is available at https://github.com/killingbear999/chemical-process-foundation-model.


QueryNER: Segmentation of E-commerce Queries

arXiv.org Artificial Intelligence

Prior work in sequence labeling for e-commerce has largely addressed aspect-value extraction which focuses on extracting portions of a product title or query for narrowly defined aspects. Our work instead focuses on the goal of dividing a query into meaningful chunks with broadly applicable types. We report baseline tagging results and conduct experiments comparing token and entity dropping for null and low recall query recovery. Challenging test sets are created using automatic transformations and show how simple data augmentation techniques can make the models more robust to noise. We make the QueryNER dataset publicly available.


Mamba-FETrack: Frame-Event Tracking via State Space Model

arXiv.org Artificial Intelligence

RGB-Event based tracking is an emerging research topic, focusing on how to effectively integrate heterogeneous multi-modal data (synchronized exposure video frames and asynchronous pulse Event stream). Existing works typically employ Transformer based networks to handle these modalities and achieve decent accuracy through input-level or feature-level fusion on multiple datasets. However, these trackers require significant memory consumption and computational complexity due to the use of self-attention mechanism. This paper proposes a novel RGB-Event tracking framework, Mamba-FETrack, based on the State Space Model (SSM) to achieve high-performance tracking while effectively reducing computational costs and realizing more efficient tracking. Specifically, we adopt two modality-specific Mamba backbone networks to extract the features of RGB frames and Event streams. Then, we also propose to boost the interactive learning between the RGB and Event features using the Mamba network. The fused features will be fed into the tracking head for target object localization. Extensive experiments on FELT and FE108 datasets fully validated the efficiency and effectiveness of our proposed tracker. Specifically, our Mamba-based tracker achieves 43.5/55.6 on the SR/PR metric, while the ViT-S based tracker (OSTrack) obtains 40.0/50.9. The GPU memory cost of ours and ViT-S based tracker is 13.98GB and 15.44GB, which decreased about $9.5\%$. The FLOPs and parameters of ours/ViT-S based OSTrack are 59GB/1076GB and 7MB/60MB, which decreased about $94.5\%$ and $88.3\%$, respectively. We hope this work can bring some new insights to the tracking field and greatly promote the application of the Mamba architecture in tracking. The source code of this work will be released on \url{https://github.com/Event-AHU/Mamba_FETrack}.


Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks

arXiv.org Artificial Intelligence

Computational efficiency and adversarial robustness are critical factors in real-world engineering applications. Yet, conventional neural networks often fall short in addressing both simultaneously, or even separately. Drawing insights from natural physical systems and existing literature, it is known that an input convex architecture enhances computational efficiency, while a Lipschitz-constrained architecture bolsters adversarial robustness. By leveraging the strengths of convexity and Lipschitz continuity, we develop a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks. This model outperforms existing recurrent units across a spectrum of engineering tasks in terms of computational efficiency and adversarial robustness. These tasks encompass a benchmark MNIST image classification, real-world solar irradiance prediction for Solar PV system planning at LHT Holdings in Singapore, and real-time Model Predictive Control optimization for a chemical reactor.


Input Convex LSTM: A Convex Approach for Fast Lyapunov-Based Model Predictive Control

arXiv.org Artificial Intelligence

Leveraging Input Convex Neural Networks (ICNNs), ICNN-based Model Predictive Control (MPC) successfully attains globally optimal solutions by upholding convexity within the MPC framework. However, current ICNN architectures encounter the issue of vanishing/exploding gradients, which limits their ability to serve as deep neural networks for complex tasks. Additionally, the current neural network-based MPC, including conventional neural network-based MPC and ICNN-based MPC, faces slower convergence speed when compared to MPC based on first-principles models. In this study, we leverage the principles of ICNNs to propose a novel Input Convex LSTM for Lyapunov-based MPC, with the specific goal of reducing convergence time and mitigating the vanishing/exploding gradient problem while ensuring closed-loop stability. From a simulation study of a nonlinear chemical reactor, we observed a mitigation of vanishing/exploding gradient problem and a reduction in convergence time, with a percentage decrease of 46.7%, 31.3%, and 20.2% compared to baseline plain RNN, plain LSTM, and Input Convex Recurrent Neural Networks, respectively.