Goto

Collaborating Authors

 Wu, Songhao


From 1,000,000 Users to Every User: Scaling Up Personalized Preference for User-level Alignment

arXiv.org Artificial Intelligence

Large language models (LLMs) have traditionally been aligned through one-size-fits-all approaches that assume uniform human preferences, fundamentally overlooking the diversity in user values and needs. This paper introduces a comprehensive framework for scalable personalized alignment of LLMs. We establish a systematic preference space characterizing psychological and behavioral dimensions, alongside diverse persona representations for robust preference inference in real-world scenarios. Building upon this foundation, we introduce \textsc{AlignX}, a large-scale dataset of over 1.3 million personalized preference examples, and develop two complementary alignment approaches: \textit{in-context alignment} directly conditioning on persona representations and \textit{preference-bridged alignment} modeling intermediate preference distributions. Extensive experiments demonstrate substantial improvements over existing methods, with an average 17.06\% accuracy gain across four benchmarks while exhibiting a strong adaptation capability to novel preferences, robustness to limited user data, and precise preference controllability. These results validate our framework's effectiveness, advancing toward truly user-adaptive AI systems.


PolarQuant: Leveraging Polar Transformation for Efficient Key Cache Quantization and Decoding Acceleration

arXiv.org Artificial Intelligence

The KV cache in large language models is a dominant factor in memory usage, limiting their broader applicability. Quantizing the cache to lower bit widths is an effective way to reduce computational costs; however, previous methods struggle with quantizing key vectors due to outliers, resulting in excessive overhead. We propose a novel quantization approach called PolarQuant, which efficiently addresses the outlier challenge. We observe that outliers typically appear in only one of two dimensions, which are rotated together by a specific angle when rotary position embeddings are applied. When represented as two-dimensional vectors, these dimensions exhibit well-structured patterns, with radii and angles smoothly distributed in polar coordinates. This alleviates the challenge of outliers on per-channel quantization, making them well-suited for quantization. Thus, PolarQuant divides key vectors into groups of two-dimensional sub-vectors, encoding them as the corresponding quantized radius and the polar angle, rather than quantizing original key vectors directly. PolarQuant achieves the superior efficiency in KV cache quantization and accelerates the decoding process by turning the query-key inner product into a table lookup, all while maintaining the downstream performance of full-precision models.


Autonomy-of-Experts Models

arXiv.org Artificial Intelligence

Mixture-of-Experts (MoE) models mostly use a router to assign tokens to specific expert modules, activating only partial parameters and often outperforming dense models. We argue that the separation between the router's decision-making and the experts' execution is a critical yet overlooked issue, leading to suboptimal expert selection and ineffective learning. To address this, we propose Autonomy-of-Experts (AoE), a novel MoE paradigm in which experts autonomously select themselves to process inputs. AoE is based on the insight that an expert is aware of its own capacity to effectively process a token, an awareness reflected in the scale of its internal activations. In AoE, routers are removed; instead, experts pre-compute internal activations for inputs and are ranked based on their activation norms. Only the top-ranking experts proceed with the forward pass, while the others abort. The overhead of pre-computing activations is reduced through a low-rank weight factorization. This self-evaluating-then-partner-comparing approach ensures improved expert selection and effective learning. We pre-train language models having 700M up to 4B parameters, demonstrating that AoE outperforms traditional MoE models with comparable efficiency.


PEAR: Position-Embedding-Agnostic Attention Re-weighting Enhances Retrieval-Augmented Generation with Zero Inference Overhead

arXiv.org Artificial Intelligence

Large language models (LLMs) enhanced with retrieval-augmented generation (RAG) have introduced a new paradigm for web search. However, the limited context awareness of LLMs degrades their performance on RAG tasks. Existing methods to enhance context awareness are often inefficient, incurring time or memory overhead during inference, and many are tailored to specific position embeddings. In this paper, we propose Position-Embedding-Agnostic attention Re-weighting (PEAR), which enhances the context awareness of LLMs with zero inference overhead. Specifically, on a proxy task focused on context copying, we first detect heads which suppress the models' context awareness thereby diminishing RAG performance. To weaken the impact of these heads, we re-weight their outputs with learnable coefficients. The LLM (with frozen parameters) is optimized by adjusting these coefficients to minimize loss on the proxy task. As a result, the coefficients are optimized to values less than one, thereby reducing their tendency to suppress RAG performance. During inference, the optimized coefficients are fixed to re-weight these heads, regardless of the specific task at hand. Our proposed PEAR offers two major advantages over previous approaches: (1) It introduces zero additional inference overhead in terms of memory usage or inference time, while outperforming competitive baselines in accuracy and efficiency across various RAG tasks. (2) It is independent of position embedding algorithms, ensuring broader applicability.