Wu, Liwei
Train Once, Get a Family: State-Adaptive Balances for Offline-to-Online Reinforcement Learning
Wang, Shenzhi, Yang, Qisen, Gao, Jiawei, Lin, Matthieu Gaetan, Chen, Hao, Wu, Liwei, Jia, Ning, Song, Shiji, Huang, Gao
Offline-to-online reinforcement learning (RL) is a training paradigm that combines pre-training on a pre-collected dataset with fine-tuning in an online environment. However, the incorporation of online fine-tuning can intensify the well-known distributional shift problem. Existing solutions tackle this problem by imposing a policy constraint on the policy improvement objective in both offline and online learning. They typically advocate a single balance between policy improvement and constraints across diverse data collections. This one-size-fits-all manner may not optimally leverage each collected sample due to the significant variation in data quality across different states. To this end, we introduce Family Offline-to-Online RL (FamO2O), a simple yet effective framework that empowers existing algorithms to determine state-adaptive improvement-constraint balances. FamO2O utilizes a universal model to train a family of policies with different improvement/constraint intensities, and a balance model to select a suitable policy for each state. Theoretically, we prove that state-adaptive balances are necessary for achieving a higher policy performance upper bound. Empirically, extensive experiments show that FamO2O offers a statistically significant improvement over various existing methods, achieving state-of-the-art performance on the D4RL benchmark.
Beyond Triplet: Leveraging the Most Data for Multimodal Machine Translation
Zhu, Yaoming, Sun, Zewei, Cheng, Shanbo, Huang, Luyang, Wu, Liwei, Wang, Mingxuan
Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets. These studies face two challenges. First, they can only utilize triple data (bilingual texts with images), which is scarce; second, current benchmarks are relatively restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and new datasets for MMT. First, we propose a framework 2/3-Triplet with two new approaches to enhance MMT by utilizing large-scale non-triple data: monolingual image-text data and parallel text-only data. Second, we construct an English-Chinese {e}-commercial {m}ulti{m}odal {t}ranslation dataset (including training and testing), named EMMT, where its test set is carefully selected as some words are ambiguous and shall be translated mistakenly without the help of images. Experiments show that our method is more suitable for real-world scenarios and can significantly improve translation performance by using more non-triple data. In addition, our model also rivals various SOTA models in conventional multimodal translation benchmarks.
Exploring Stochastic Autoregressive Image Modeling for Visual Representation
Qi, Yu, Yang, Fan, Zhu, Yousong, Liu, Yufei, Wu, Liwei, Zhao, Rui, Li, Wei
Autoregressive language modeling (ALM) have been successfully used in self-supervised pre-training in Natural language processing (NLP). However, this paradigm has not achieved comparable results with other self-supervised approach in computer vision (e.g., contrastive learning, mask image modeling). In this paper, we try to find the reason why autoregressive modeling does not work well on vision tasks. To tackle this problem, we fully analyze the limitation of visual autoregressive methods and proposed a novel stochastic autoregressive image modeling (named SAIM) by the two simple designs. First, we employ stochastic permutation strategy to generate effective and robust image context which is critical for vision tasks. Second, we create a parallel encoder-decoder training process in which the encoder serves a similar role to the standard vision transformer focus on learning the whole contextual information, and meanwhile the decoder predicts the content of the current position, so that the encoder and decoder can reinforce each other. By introducing stochastic prediction and the parallel encoder-decoder, SAIM significantly improve the performance of autoregressive image modeling. Our method achieves the best accuracy (83.9%) on the vanilla ViT-Base model among methods using only ImageNet-1K data. Transfer performance in downstream tasks also show that our model achieves competitive performance.
Unified Multimodal Punctuation Restoration Framework for Mixed-Modality Corpus
Zhu, Yaoming, Wu, Liwei, Cheng, Shanbo, Wang, Mingxuan
The punctuation restoration task aims to correctly punctuate the output transcriptions of automatic speech recognition systems. Previous punctuation models, either using text only or demanding the corresponding audio, tend to be constrained by real scenes, where unpunctuated sentences are a mixture of those with and without audio. This paper proposes a unified multimodal punctuation restoration framework, named UniPunc, to punctuate the mixed sentences with a single model. UniPunc jointly represents audio and non-audio samples in a shared latent space, based on which the model learns a hybrid representation and punctuates both kinds of samples. We validate the effectiveness of the UniPunc on real-world datasets, which outperforms various strong baselines (e.g. BERT, MuSe) by at least 0.8 overall F1 scores, making a new state-of-the-art. Extensive experiments show that UniPunc's design is a pervasive solution: by grafting onto previous models, UniPunc enables them to punctuate on the mixed corpus. Our code is available at github.com/Yaoming95/UniPunc
Temporal Collaborative Ranking Via Personalized Transformer
Wu, Liwei, Li, Shuqing, Hsieh, Cho-Jui, Sharpnack, James
The collaborative ranking problem has been an important open research question as most recommendation problems can be naturally formulated as ranking problems. While much of collaborative ranking methodology assumes static ranking data, the importance of temporal information to improving ranking performance is increasingly apparent. Recent advances in deep learning, especially the discovery of various attention mechanisms and newer architectures in addition to widely used RNN and CNN in natural language processing, have allowed us to make better use of the temporal ordering of items that each user has engaged with. In particular, the SASRec model, inspired by the popular Transformer model in natural languages processing, has achieved state-of-art results in the temporal collaborative ranking problem and enjoyed more than 10x speed-up when compared to earlier CNN/RNN-based methods. However, SASRec is inherently an un-personalized model and does not include personalized user embeddings. To overcome this limitation, we propose a Personalized Transformer (SSE-PT) model, outperforming SASRec by almost 5% in terms of NDCG@10 on 5 real-world datasets. Furthermore, after examining some random users' engagement history and corresponding attention heat maps used during the inference stage, we find our model is not only more interpretable but also able to focus on recent engagement patterns for each user. Moreover, our SSE-PT model with a slight modification, which we call SSE-PT++, can handle extremely long sequences and outperform SASRec in ranking results with comparable training speed, striking a balance between performance and speed requirements. Code and data are open sourced at https://github.com/wuliwei9278/SSE-PT.
Graph DNA: Deep Neighborhood Aware Graph Encoding for Collaborative Filtering
Wu, Liwei, Yu, Hsiang-Fu, Rao, Nikhil, Sharpnack, James, Hsieh, Cho-Jui
In this paper, we consider recommender systems with side information in the form of graphs. Existing collaborative filtering algorithms mainly utilize only immediate neighborhood information and have a hard time taking advantage of deeper neighborhoods beyond 1-2 hops. The main caveat of exploiting deeper graph information is the rapidly growing time and space complexity when incorporating information from these neighborhoods. In this paper, we propose using Graph DNA, a novel Deep Neighborhood Aware graph encoding algorithm, for exploiting deeper neighborhood information. DNA encoding computes approximate deep neighborhood information in linear time using Bloom filters, a space-efficient probabilistic data structure and results in a per-node encoding that is logarithmic in the number of nodes in the graph. It can be used in conjunction with both feature-based and graph-regularization-based collaborative filtering algorithms. Graph DNA has the advantages of being memory and time efficient and providing additional regularization when compared to directly using higher order graph information. We conduct experiments on real-world datasets, showing graph DNA can be easily used with 4 popular collaborative filtering algorithms and consistently leads to a performance boost with little computational and memory overhead.
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers
Wu, Liwei, Li, Shuqing, Hsieh, Cho-Jui, Sharpnack, James
In deep neural nets, lower level embedding layers account for a large portion of the total number of parameters. Tikhonov regularization, graph-based regularization, and hard parameter sharing are approaches that introduce explicit biases into training in a hope to reduce statistical complexity. Alternatively, we propose stochastically shared embeddings (SSE), a data-driven approach to regularizing embedding layers, which stochastically transitions between embeddings during stochastic gradient descent (SGD). Because SSE integrates seamlessly with existing SGD algorithms, it can be used with only minor modifications when training large scale neural networks. We develop two versions of SSE: SSE-Graph using knowledge graphs of embeddings; SSE-SE using no prior information. We provide theoretical guarantees for our method and show its empirical effectiveness on 6 distinct tasks, from simple neural networks with one hidden layer in recommender systems, to the transformer and BERT in natural languages. We find that when used along with widely-used regularization methods such as weight decay and dropout, our proposed SSE can further reduce overfitting, which often leads to more favorable generalization results.
SQL-Rank: A Listwise Approach to Collaborative Ranking
Wu, Liwei, Hsieh, Cho-Jui, Sharpnack, James
In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking.