Wu, Liming
Siamese Foundation Models for Crystal Structure Prediction
Wu, Liming, Huang, Wenbing, Jiao, Rui, Huang, Jianxing, Liu, Liwei, Zhou, Yipeng, Sun, Hao, Liu, Yang, Sun, Fuchun, Ren, Yuxiang, Wen, Jirong
Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.
Equivariant Spatio-Temporal Attentive Graph Networks to Simulate Physical Dynamics
Wu, Liming, Hou, Zhichao, Yuan, Jirui, Rong, Yu, Huang, Wenbing
Learning to represent and simulate the dynamics of physical systems is a crucial yet challenging task. Existing equivariant Graph Neural Network (GNN) based methods have encapsulated the symmetry of physics, \emph{e.g.}, translations, rotations, etc, leading to better generalization ability. Nevertheless, their frame-to-frame formulation of the task overlooks the non-Markov property mainly incurred by unobserved dynamics in the environment. In this paper, we reformulate dynamics simulation as a spatio-temporal prediction task, by employing the trajectory in the past period to recover the Non-Markovian interactions. We propose Equivariant Spatio-Temporal Attentive Graph Networks (ESTAG), an equivariant version of spatio-temporal GNNs, to fulfill our purpose. At its core, we design a novel Equivariant Discrete Fourier Transform (EDFT) to extract periodic patterns from the history frames, and then construct an Equivariant Spatial Module (ESM) to accomplish spatial message passing, and an Equivariant Temporal Module (ETM) with the forward attention and equivariant pooling mechanisms to aggregate temporal message. We evaluate our model on three real datasets corresponding to the molecular-, protein- and macro-level. Experimental results verify the effectiveness of ESTAG compared to typical spatio-temporal GNNs and equivariant GNNs.
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Han, Jiaqi, Cen, Jiacheng, Wu, Liming, Li, Zongzhao, Kong, Xiangzhe, Jiao, Rui, Yu, Ziyang, Xu, Tingyang, Wu, Fandi, Wang, Zihe, Xu, Hongteng, Wei, Zhewei, Liu, Yang, Rong, Yu, Huang, Wenbing
Geometric graph is a special kind of graph with geometric features, which is vital to model many scientific problems. Unlike generic graphs, geometric graphs often exhibit physical symmetries of translations, rotations, and reflections, making them ineffectively processed by current Graph Neural Networks (GNNs). To tackle this issue, researchers proposed a variety of Geometric Graph Neural Networks equipped with invariant/equivariant properties to better characterize the geometry and topology of geometric graphs. Given the current progress in this field, it is imperative to conduct a comprehensive survey of data structures, models, and applications related to geometric GNNs. In this paper, based on the necessary but concise mathematical preliminaries, we provide a unified view of existing models from the geometric message passing perspective. Additionally, we summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation. We also discuss the challenges and future potential directions of Geometric GNNs at the end of this survey.
A Odor Labeling Convolutional Encoder-Decoder for Odor Sensing in Machine Olfaction
Wen, Tengteng, Mo, Zhuofeng, Li, Jingshan, Liu, Qi, Wu, Liming, Luo, Dehan
Machine olfaction is usually crystallized as electronic noses (e-noses) which consist of an array of gas sensors mimicking biological noses to'smell' and'sense' odors [1]. Gas sensors in the array should be carefully selected based on several specifications (sensitivity, selectivity, response time, recovery time, etc.) for specific detecting purposes. On the other side, some general-purpose e-noses may have an array of gas sensors that are sensitive to a variety of odorous materials so that such e-noses can be applied to many fields. An increasing number of researches and applications utilized machine olfaction in recent years. In the early 20th century, some studies applied e-noses to the analysis of products along with gas chromatography-mass spectrometers (GC-MS) [2]. Some linear methods such as principal component analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVM), etc. were used in the analysis [3].